Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 12 chuyên năm học 2018 - 2019 sở GDĐT Đồng Nai

Đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được tổ chức ngày 18 tháng 01 năm 2019 nhằm tuyển chọn các em học sinh giỏi Toán đang theo học hệ chương trình chuyên tại tỉnh Đồng Nai để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Đồng Nai tham dự kỳ thi học sinh giỏi Toán chuyên cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho m, n là các số tự nhiên thỏa mãn 4m^3 + m = 12n^3 + n. Chứng minh rằng m – n là lập phương của một số nguyên. [ads] + Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H, K là trung điểm BC và G là hình chiếu vuông góc của H trên AK. Lấy D đối xứng G qua BC và I đối xứng C qua D. Tia phân giác góc ACB cắt AB tại F và tia phân giác góc BID cắt BD ở M, MF cắt AC tại E. 1) Chứng minh rằng D nằm trên đường tròn (O). 2) Tiếp tuyến tại A của (O) cắt BC ở X, XE cắt đường tròn ngoại tiếp tam giác EBM ở điểm thứ hai là Y. Chứng minh rằng đường tròn ngoại tiếp tam giác EYD tiếp xúc đường tròn (O).

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Bến Tre Bản PDF Thứ Tư ngày 24 tháng 02 năm 2021, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho hàm số y = (x + 1)/(3 – x) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Tìm các số thực m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt M, N tạo thành tam giác MNI có trọng tâm nằm trên (C). + Gọi M là tập hợp các số tự nhiên gồm 5 chữ số khác nhau đôi một được lập từ tập X = {0; 1; 2; 3; 4; 5}. Lấy ngẫu nhiên 2 phần tử của M. Tính xác suất để có ít nhất một trong hai phần tử đó chia hết cho 3. + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V1 là thể tích của khối chóp S. AMPN. Tìm giá trị nhỏ nhất của V1/V.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Khánh Hòa
Nội dung Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Khánh Hòa Bản PDF Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2020.
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế Bản PDF Thứ Ba ngày 19 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề). Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chẵn. + Cho phương trình: (2m + 3).16^x – (4m – 2).4^x + 3m – 8 = 0 (1) với m là tham số thực. a) Giải phương trình khi m = 3. b) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm trái dấu. + Cho hình chóp S.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Gọi H là hình chiếu của S lên mặt phẳng đáy ABCD. a) Chứng minh rằng SA vuông góc với SC. b) Tính diện tích đáy ABCD theo x của hình chóp S.ABCD. c) Xác định x để khối chóp S.ABCD có thể tích lớn nhất. Tính giá trị thể tích lớn nhất đó.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Lào Cai
Nội dung Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 2021 sở GD ĐT Lào Cai Bản PDF Sáng thứ Hai ngày 18 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh THPT môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Lào Cai gồm 05 bài toán dạng tự luận, thời gian thí sinh làm bài thi là 180 phút, thí sinh không được sử dụng tài liệu và máy tính cầm tay khi làm bài. Trích dẫn đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Lào Cai : + Cho tập S = {1; 2; 3; … ; 2016}. a) Hỏi có bao nhiêu tập con gồm 3 phần tử khác nhau chọn từ tập S, sao cho 3 số được chọn là độ dài 3 cạnh của một tam giác mà cạnh lớn nhất độ dài là 1000. b) Chọn ngẫu nhiên 3 số khác nhau từ tập S. Tính xác suất sao cho 3 số được chọn là độ dài 3 cạnh của một tam giác mà cạnh lớn nhất độ dài là số chẵn. + Cho hình chóp tứ giác đều S.ABCD biết AB = a, góc giữa hai mặt phẳng (SBC0 và (ABCD) bằng 60°. a) Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. b) Lấy các điểm M, P lần lượt thuộc cạnh AD, SC sao cho AM/AD = 1/2, SP/SC = 3/5. Gọi N là giao điểm của SD với mặt phẳng (BMP). Tính thể tích của khối đa diện SABMNP. + Tìm tất cả các giá trị của tham số m để phương trình log2 (2x + m) – 2log2 x = x2 – 4x – 2m – 1 có hai nghiệm thực phân biệt.