Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường chuyên Lam Sơn Thanh Hóa

Nội dung Đề KSCL giữa học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường chuyên Lam Sơn Thanh Hóa Bản PDF Thứ Bảy ngày 16 tháng 05 năm 2020, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kỳ thi kiểm tra khảo sát chất lượng giữa học kì 2 môn Toán lớp 12 năm học 2019 – 2020. Đề KSCL giữa học kì 2 Toán lớp 12 năm 2019 – 2020 trường chuyên Lam Sơn – Thanh Hóa mã đề 149 và mã đề 183 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề KSCL giữa học kì 2 Toán lớp 12 năm 2019 – 2020 trường chuyên Lam Sơn – Thanh Hóa : + Viện Hải dương học dự định làm một bể cá bằng kính phục vụ khách tham quan, biết rằng mặt cắt dành cho lối đi là nửa đường tròn (kích thước như hình vẽ). Tính diện tích kính để làm mái vòm của bể cá. + Xét các số thực dương a, b, c lớn hơn 1 (với a > b) thỏa mãn 4(log_a c + log_b c) = 25log_ab c. Giá trị nhỏ nhất của biểu thức log_b a + log_a c + log_c b bằng? [ads] + Đầu năm 2019, ông A mở một công ty và dự kiến tiền lương trả cho nhân viên là 600 triệu đồng cho năm này. Ông A dự tính số tiền trả lương sẽ tăng 15% mỗi năm. Hỏi năm đầu tiên số tiền lương ông A phải trả cho năm đó vượt quá 1 tỉ đồng là năm nào? + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC là tam giác đều, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Góc giữa đường thẳng SD và mặt phẳng (ABCD) bằng 30 độ. Tính khoảng cách từ B đến mặt phẳng (SCD) theo a. + Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn [-20;20] sao cho phương trình 3^(x + a) – 3^x = ln(1 + x + a) – ln(1 + x) có nghiệm duy nhất?

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Ninh Bình
Nội dung Đề thi khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát, đánh giá chất lượng giáo dục môn Toán lớp 12 THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình, hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán; đề thi có đáp án trắc nghiệm tất cả các mã đề. Trích dẫn Đề thi khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Cho một mặt cầu và một hình nón nội tiếp trong mặt cầu. Thiết diện qua trục của hình nón là một tam giác nhọn, không đều và diện tích xung quanh của hình nón bằng 3 8 diện tích mặt cầu. Gọi α là góc giữa đường sinh và mặt đáy của hình nón. Biết cosα a b c với a, b, c là các số nguyên dương đôi một nguyên tố cùng nhau. Tổng a + b + c bằng? + Cho hàm số f(x) có đạo hàm trên R thoả mãn f(x) = f0(x) + 2 (3x + 1)ex, ∀x ∈ R và f(1) = −3e. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = 2f(x) và y = f0(x) thuộc khoảng nào dưới đây? + Cho hình chóp S.ABC. Gọi K là điểm thỏa mãn SK = 14SB + 13SC và L là giao điểm của đường thẳng SK với đường thẳng BC. Biết thể tích khối chóp S.ABC bằng 56, thể tích khối chóp S.ABL bằng?
Đề thi khảo sát lớp 12 môn Toán năm 2023 lần 1 trường THPT Thái Phiên Hải Phòng
Nội dung Đề thi khảo sát lớp 12 môn Toán năm 2023 lần 1 trường THPT Thái Phiên Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán lớp 12 năm 2023 lần 1 trường THPT Thái Phiên, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm và lời giải chi tiết mã đề 103. Trích dẫn Đề thi khảo sát Toán lớp 12 năm 2023 lần 1 trường THPT Thái Phiên – Hải Phòng : + Có hai hộp bút chì màu, các bút chì khác nhau. Hộp thứ nhất có bút chì màu 5 đỏ và bút chì 7 màu xanh. Hộp thứ hai có bút chì màu 8 đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để chọn một cây bút chì màu đỏ và một bút chì màu xanh là? + Cho hàm số có ba điểm cực trị là 4 3 2 f x 2x ax bx cx d (a b c d). Gọi là hàm y = g(x) số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường và y = f(x) và y = g(x) bằng? + Cho hàm số y = f(x) xác định và liên tục trên R có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) trên đoạn [-2;2].