Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An

Nội dung Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán sở GD&ĐT Nghệ An. Đề thi được biên soạn theo dạng tự luận, với cấu trúc tương tự các năm học trước. Đề thi bao gồm 5 bài toán, thời gian làm bài là 120 phút. Trích đề thi chính thức tuyển sinh vào lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Nghệ An: 1. Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC). a) Chứng minh BOMH là tứ giác nội tiếp. b) MB cắt OH tại E. Chứng minh ME.HM = BE.HC. c) Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K. Chứng minh ba điểm C, K, E thẳng hàng. 2. Tình cảm gia đình có sức mạnh thật phi thường. Bạn Vi Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180 km từ Sơn La đến bệnh viện nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/giờ. Tính vận tốc xe đạp của bạn Chiến. 3. Xác định hàm số bậc nhất y = ax + b biết rằng đồ thị của hàm số đi qua hai điểm M(1;-1) và N(2;1).

Nguồn: sytu.vn

Đọc Sách

Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 - 2025 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 – 2025 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một người lái xe máy để giao một gói hàng từ địa điểm A đến địa điểm B với vận tốc không đổi trên quảng đường dài 30km. Khi giao hàng xong, người đó đi từ B trở về A trên cùng quãng đường với vận tốc lớn hơn vận tốc lúc đi là 10km/h. Biết thời gian đi nhiều hơn thời gian về là 15 phút, tính vận tốc của người đó lúc đi từ A đến B. + Một chiếc nón lá có dạng hình nón với đường kính đáy bằng 44cm, độ dài đường sinh là 30cm. Người ta lát mặt ngoài xung quanh hình nón bằng 3 lớp lá khô. Tính diện tích lá cần dùng để tạo nên một chiếc nón lá như vậy. + Cho tam giác ABC (AB > AC) nội tiếp đường tròn (O). Gọi M là trung điểm của BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ M đến các đường thẳng AB, AC. 1) Chứng minh bốn điểm A, E, M, F cùng thuộc một đường tròn. 2) Đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K. Chứng minh KBC = MEF và BC.ME = EF.BK. 3) Gọi J là trung điểm của EF. Chứng minh AO song song với JM.
30 đề minh họa Toán (chung) vào lớp 10 năm 2024 - 2025 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 tài liệu tuyển tập 30 đề minh họa tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2024 – 2025 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm.
Đề khảo sát Toán (chuyên) vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán (dành cho thí sinh thi vào chuyên Toán và chuyên Tin học) tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán (chuyên) vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho n là số nguyên dương và d là ước dương của 2 2 n chứng minh 2 n d không phải là số chính phương. + Tam giác nhọn không cân ABC nội tiếp đường tròn O đường cao AH H BC. Gọi K L lần lượt là hình chiếu vuông góc của điểm H trên các cạnh AB AC. Đường thẳng KL cắt đường tròn O tại hai điểm P Q (P và B cùng phía đối với AC). a) Chứng minh tứ giác BKLC nội tiếp đường tròn. b) Chứng minh BC là tiếp tuyến của đường tròn ngoại tiếp tam giác PHQ. c) AH cắt lại đường tròn O tại TT A. Gọi D là hình chiếu vuông góc của H lên KL AD cắt đường tròn O tại MM A. Chứng minh 0 HMT 90. + Chứng minh rằng từ 6 số vô tỉ tùy ý ta có thể chọn được 3 số abc sao cho cả 3 số a bb cc a đều là số vô tỉ. Bài toán còn đúng không nếu ban đầu là 4 số?
Bộ đề ôn tập tuyển sinh vào lớp 10 môn Toán - Lê Trung Tuyến
Tài liệu gồm 255 trang, được biên soạn bởi thầy giáo Lê Trung Tuyến, tuyển tập 50 đề ôn tập tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết.