Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 2 Toán 7 năm 2023 - 2024 trường THCS Đa Tốn - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra cuối học kỳ 2 môn Toán 7 năm học 2023 – 2024 trường THCS Đa Tốn, huyện Gia Lâm, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 2 Toán 7 năm 2023 – 2024 trường THCS Đa Tốn – Hà Nội : + Trong đợt tham gia hội trại kỉ niệm ngày thành lập Đoàn do liên đội trường THCS Đa Tốn tổ chức, ba lớp 7A, 7B, 7C có tham gia làm gian hàng. Sau buổi bán hàng mỗi lớp đã lãi được một số tiền. Biết số tiền lãi của ba lớp 7A, 7B, 7C tỉ lệ với 4, 5 và 2 và số tiền lãi của lớp 7A nhiều hơn lớp 7C là 150 nghìn đồng. Hãy tính số tiền lãi mà ba lớp đã nhận được. + Trên bản đồ quy hoạch của một khu dân cư có ba điểm dân cư ABC. Xác định địa điểm M xây dựng trường học sao cho trường học này cách đều ba điểm của dân cư đó A. Điểm M cần tìm là giao điểm của hai đường trung trực của hai đoạn AB AC. B. Điểm M cần tìm là giao điểm của hai đường trung tuyến của ∆ABC. C. Điểm M cần tìm là giao điểm của hai đường cao của ∆ABC. D. Điểm M cần tìm là giao điểm của hai đường phân giác của ∆ABC. + Trong các biến cố sau, biến cố nào là biến cố chắc chắn? A. “Trong điều kiện thường, nước đun đến 1000 C sẽ sôi” B. “Tháng hai dương lịch năm sau có 31 ngày” C. “Khi gieo hai con xúc xắc thì tổng số chấm xuất hiện trên hai con xúc xắc là 8” D. “Ngày 19/5/2023 tại thị xã Hoàng Mai sẽ có mưa”.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 7 năm 2019 - 2020 trường THCS Đặng Trần Côn - TP HCM
Nhằm giúp các em học sinh lớp 7 có sự chuẩn bị tốt nhất cho đợt kiểm tra định kỳ cuối học kì 2 môn Toán lớp 7, THCS. giới thiệu đến các em PDF đề thi + đáp án + lời giải chi tiết đề thi học kì 2 Toán 7 năm học 2019 – 2020 trường THCS Đặng Trần Côn, quận Tân Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 7 năm 2019 – 2020 trường THCS Đặng Trần Côn – TP HCM : + Một cửa hàng thời trang nhập về 300 đôi giày kiểu mới. Ban đầu cửa hàng bán một đôi giày với giá 180 000 đồng. Thống kê tháng 1, cửa hàng bán được 50 đôi giày và lời được 3 500 000 đồng. Đến tháng 2, cửa hàng khuyến mãi dịp tết nên mỗi đôi giày bán ra đều giảm giá 10% và đã bán được hết số giày còn lại. Hỏi cửa hàng lời bao nhiêu tiền trong tháng 2. + Tính chiều cao AC của bức tường biết rằng chân thang cách tường 1m và chiều dài của thang là 4m (làm tròn kết quả một chữ số thập phân). + Trên thế giới hiện nay khoảng 2,2 tỷ người đang bị thiếu nước sạch. Ở nước ta, đầu năm 2020 các tỉnh đồng bằng sông Cửu Long cũng đã chịu ảnh hưởng rất lớn của hạn mặn, thiếu nước sinh hoạt. Hưởng ứng Ngày Nước thế giới tổ chức vào ngày 22/3 hàng năm, mọi người không sử dụng nước một cách lãng phí và góp phần vào việc giảm thiểu tác động của biến đổi khí hậu. Lượng nước tiêu thụ (tính bằng m3) trong tháng 3 của các hộ gia đình tại khu phố X được ghi lại ở bảng sau: 10 13 15 17 22 17 10 15 16 13 15 16 15 13 15 13 16 15 17 22 22 13 17 16 10 15 17 13 10 15 a) Dấu hiệu ở đây là gì? Khu phố X có bao nhiêu hộ gia đình? b) Lập bảng tần số, tìm mốt và tính lượng nước trung bình mỗi hộ gia đình sử dụng trong tháng 3.
Đề thi học kì 2 Toán 7 năm 2019 - 2020 trường THCS Huỳnh Văn Nghệ - TP HCM
Nhằm giúp các em học sinh lớp 7 có sự chuẩn bị tốt nhất cho đợt kiểm tra định kỳ cuối học kì 2 môn Toán lớp 7, THCS. giới thiệu đến các em PDF đề thi + đáp án + lời giải chi tiết đề thi học kì 2 Toán 7 năm học 2019 – 2020 trường THCS Huỳnh Văn Nghệ, quận Bình Tân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 7 năm 2019 – 2020 trường THCS Huỳnh Văn Nghệ – TP HCM : + Hai đơn vị kinh doanh góp vốn theo tỉ lệ 6 : 4 , cuối năm mỗi đơn vị sẽ được chia tiền lãi theo tỉ lệ đã đóng góp. Biết tiền lãi bình quân hàng tháng là 30 triệu đồng. Hỏi cuối năm mỗi đơn vị sẽ được chia bao nhiêu tiền? + Một người chạy lên một con dốc có chiều dài AC = 10 mét. Biết đỉnh dốc đó cao 4 mét (Hình 1). Tính khoảng cách từ A đến B. (Làm tròn kết quả đến hàng đơn vị). + Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. a) Chứng minh: AMB = DMC, từ đó suy ra: AB = DC. b) Chứng minh: AD = BC. c) Kẻ AH là đường cao của tam giác ABC. Trên tia đối tia CD, lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC.
Đề thi học kì 2 Toán 7 năm 2019 - 2020 trường THCS Lý Phong - TP HCM
Nhằm giúp các em học sinh lớp 7 có sự chuẩn bị tốt nhất cho đợt kiểm tra định kỳ cuối học kì 2 môn Toán lớp 7, THCS. giới thiệu đến các em PDF đề thi + đáp án + lời giải chi tiết đề thi học kì 2 Toán 7 năm học 2019 – 2020 trường THCS Lý Phong, Quận 5, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 7 năm 2019 – 2020 trường THCS Lý Phong – TP HCM : + Một chiếc thang có chiều dài BC là 4,2 m tựa vào một bức tường có chiều cao AC. Hãy tính xem bức tường cao bao nhiêu mét? Biết khoảng cách từ chân thang B đến chân tường A là 1,7m. (Làm tròn kết quả đến chữ số thập phân thứ 2) Chú ý:không cần vẽ lại hình. + Một nền nhà hình chữ nhật có kích thước lần lượt là 5,2 m và 17,6 m. Bác thợ hồ sử dụng viên gạch hình vuông có kích thước 80cm để lát cho nền nhà. Em hãy tính giúp xem bác thợ hồ cần bao nhiêu viên gạch? (bỏ qua đường nối giữa các viên gạch). + Cho ∆ABC vuông tại A. Vẽ tia phân giác của B cắt AC tại D. Từ D vẽ DM vuông góc với BC tại M. a) Chứng minh ∆ABD = ∆MBD và AB = BM. b) Tia MD cắt tia BA tại N. Chứng minh ∆AND = ∆MCD và AM // NC. c) Tia BD cắt NC tại K. Gọi I là trung điểm của DC và NI cắt BK tại G. Chứng minh 3DG < 4DI.
Đề thi học kỳ 2 Toán 7 năm 2019 - 2020 trường THPT chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học kỳ 2 Toán 7 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 7 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam : + Cho đa thức f(x) = x^3 + ax^2 – bx + 2. a) Cho a = -1/2 và b = 4. Chứng minh rằng x = 1/2 là nghiệm của đa thức. b) Biết đa thức đã cho nhận x = 1 và x = -2 là nghiệm. Tìm giá trị của a và b? c) Với đa thức tìm được ở câu b, hãy tìm giá trị của x thỏa mãn f(x) = x + 2. [ads] + Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm E sao cho AK = CH. a) Chứng minh rằng: tam giác ABD = tam giác HBD. b) Chứng minh rằng: Đường thẳng BD là đường trung trực của đoạn thẳng AH và AD < DC. c) Chứng minh rằng: Ba điểm H, D, K thẳng hàng và đường thẳng BD vuông góc với đường thẳng KC. d) Chứng minh rằng: 2(AD + AK) > CK. + Tìm tất cả các đa thức f(x) có các hệ số nguyên thỏa mãn điều kiện: (x + 1).f(x) = (x – 2).f(x + 2) và f(0) = 1.