Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa kỳ thi tuyển sinh lớp 10 THPT năm học 2018 - 2019 môn Toán sở GD và ĐT TP. HCM

Đề minh họa kỳ thi tuyển sinh lớp 10 THPT năm học 2018 – 2019 môn Toán sở Giáo dục và Đào tạo thành phố Hồ Chí Minh gồm 10 bài toán tự luận, thời gian làm bài 120 phút. Đề thi có lời giải chi tiết. Trích dẫn đề thi : + Một con robot được thiết kế có thể đi thẳng, quay một góc 90 độ sang phải hoặc sang trái. Robot xuất phát từ vị trí A đi thẳng 1 m, quay sang trái rồi đi thẳng 1 m, quay sang phải rồi đi thẳng 3 m, quay sang trái rồi đi thẳng 1 m đến đích tại vị trí B. Tính theo đơn vị mét khoảng cách giữa đích đến và nơi xuất phát của robot (ghi kết quả gần đúng chính xác đến 1 chữ số thập phân). + Thực hiện chương trình khuyến mãi “Ngày Chủ Nhật Vàng” một của hàng điện máy giảm giá 50% trên 1 ti vi cho lô hàng ti vi gồm có 40 cái với giá được bán lẻ trước đó là 6.500.000 đồng/cái. Đến trưa cùng ngày thì cửa hàng đã bán được 20 cái và của hàng quyết định giảm giá thêm 10% nữa (so với giá đã giảm lần 1) cho số ti vi còn lại. a. Tính số tiền mà cửa hàng thu được sau khi bán hết lô hàng ti vi. b. Biết rằng giá vốn là 2.850.000 đồng/cái ti vi. Hỏi của hàng lời hay lỗ khi bán hết lô hàng ti vi đó? [ads] + Kính lão đeo mắt của người già thường là một loại thấu kính hội tụ. Bạn Năm đã dùng một chiếc kính lão của ông ngoại để tạo ra hình ảnh của một cây nến trên tấm màn. Cho rằng cây nến là một vật sangscos hình dạng đoạn thẳng AB đặt vuông góc với trục chính của một thấu kính hội tụ, cách thấu kính đoạn OA  2 m. Thấu kính có quang tâm O và tiêu điểm F. Vật AB cho ảnh thật A B’ ‘ gấp ba lần AB (có đường đi của tia sáng được mô tả như hình vẽ). Tính tiêu cự OF của thấu kính. + Có 45 người gồm bác sĩ và luật sư, tuổi trung bình của họ là 40. Tính số bác sĩ, luật sư biết rằng tuổi trung bình của bác sĩ là 35, tuổi trung bình của luật sư là 50. + Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt trái đất khoảng 36000 km, tâm quỹ đạo vệ tinh trùng với tâm O của Trái Đất. Vệ tinh phát tín hiệu vô tuyến theo một đường thẳng đến một vị trí trên mặt đất. Hỏi vị trí xa nhất trên trái đất có thể nhận được tín hiệu từ vệ tinh này ở cách vệ tinh một khoảng bao nhiêu km (ghi kết quả gần đúng chính xác đến hàng đơn vị). Biết rằng Trái Đất được xem như một hình cầu có bán kính khoảng 6400 km.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Hà Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Đề thi tuyển sinh chuyên môn Toán (chung) năm 2023 - 2024 sở GD&ĐT Hà Nam Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (đề chung) năm học 2023 – 2024 của sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Đề thi bao gồm đáp án và lời giải chi tiết, được tổ chức vào thứ Hai ngày 29 tháng 05 năm 2023. Trong đề tuyển sinh, có các câu hỏi như sau: Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x^2, đường thẳng (d) có phương trình y = 2x + m^2 – 4m + 9 (với m là tham số) và đường thẳng (delta) có phương trình y = (a − 3)x + 4 (với a là tham số). Hãy tìm a để đường thẳng (d) và đường thẳng (delta) vuông góc với nhau. Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B với mọi m. Gọi A(x1;y1) và B(x2;y2) (với x1 < x2), hãy tìm tất cả các giá trị của tham số m sao cho |x1 − 2023| − |x2 + 2023| = y1 + y2 − 48. Xét đường tròn (O) và tiếp tuyến MA, MB với đường tròn từ điểm M bên ngoài. Chứng minh AECD nội tiếp đường tròn, rằng CDE = CFD, CD vuông góc IK và NC đi qua trung điểm của AB. Cho a, b, c là các số không âm thỏa mãn a + b + c = 1011. Chứng minh. Đề thi tuyển sinh chuyên môn Toán năm 2023 - 2024 sở GD&ĐT Hà Nam hứa hẹn sẽ là thách thức đầy hấp dẫn dành cho các thí sinh. Hãy cùng chuẩn bị và vững tin để vượt qua thử thách này!
Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD ĐT Giao Thuỷ Nam Định
Nội dung Đề khảo sát Toán vào 10 năm 2023 lần 3 phòng GD ĐT Giao Thuỷ Nam Định Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lớp 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ Nam Định Đề khảo sát Toán vào lớp 10 năm 2023 lần 3 phòng GD&ĐT Giao Thuỷ Nam Định Sytu xin chào đến quý thầy cô và các em học sinh lớp 9. Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm 2023 lần 3 của phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định đã được công bố. Đề thi bao gồm câu hỏi và đáp án, cũng như hướng dẫn cách chấm điểm. Để có cái nhìn tổng quan, dưới đây là một vài câu hỏi đáng chú ý trong đề khảo sát: 1. Cho phương trình \(2x^2 - 3mx = 0\) (với m là tham số). a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị m. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1, x_2\) thỏa mãn \(x_1 + x_2 = 3\). 2. Cho đường tròn O bán kính 3cm. Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (A, B là các tiếp điểm) sao cho góc AOB = 120 độ. Tính diện tích phần giới hạn bởi hai tiếp tuyến MA, MB và cung nhỏ AB. 3. Cho đường tròn (O) có dây AB không phải là đường kính, các tiếp tuyến tại A và B cắt nhau tại M. Vẽ tiếp tuyến MCD nằm giữa hai tia MA và MO (MC và MD). Đoạn thẳng MO cắt AB tại H và cắt (O) tại I. Chứng minh: a) \( \frac{MA}{MC} = \frac{MD}{MO} \) và \( \frac{MC}{MD} = \frac{OH}{OM} \). b) Tứ giác OHCD nội tiếp và CI là tia phân giác của góc HCM. Hãy chuẩn bị kỹ lưỡng và tự tin để làm bài thi tốt nhé! Chúc các em thành công!
Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024
Nội dung Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bản PDF - Nội dung bài viết Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 2024 Bộ đề ôn thi tuyển sinh vào môn Toán năm học 2023 - 2024 bao gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo. Tài liệu này là tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán, với các đề thi hình thức 100% tự luận. Thời gian làm bài cho mỗi đề là 90 phút, và đều đi kèm đáp án và lời giải chi tiết. Trong bộ đề này, có một câu hỏi thú vị như sau: "Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả Đen bằng cáp treo khứ hồi. Tuy nhiên, có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên và sẽ đi cáp treo khi xuống. Vì vậy, 5 bạn trẻ mua vé lượt xuống, khiến cho đoàn phải chi ra tổng cộng 9.450.000 đồng. Hỏi giá vé cáp treo khứ hồi và vé lượt là bao nhiêu? Biết rằng giá vé lượt rẻ hơn giá vé khứ hồi 110.000 đồng." Ngoài ra, bộ đề còn đưa ra các bài toán khác như: Tính giá trị của góc BIF trong tam giác ABC vuông tại A; Chứng minh rằng điểm A nằm trên đường tròn ngoại tiếp tam giác EFK trong hình chữ nhật ABCD với các điều kiện đã cho. Qua bộ đề này, học sinh sẽ được rèn luyện kỹ năng giải bài toán, tư duy logic và sự tự tin khi đối mặt với các dạng đề thi tuyển sinh vào lớp 10. Cùng tham gia và thách thức bản thân với những câu hỏi thú vị và bổ ích trong bộ đề ôn thi này nhé!
Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá
Nội dung Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá Bản PDF - Nội dung bài viết Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 Thanh Hoá Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 tại trường THPT Quảng Xương 1, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào thứ Ba ngày 09 tháng 05 năm 2023, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trích dẫn từ Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá: Trong mặt phẳng tọa độ Oxy, tìm a, b sao cho đường thẳng d có phương trình y=ax+b, với hệ số góc bằng 3 và cắt đường thẳng ∆ y=x/2+3 tại điểm có tung độ bằng 5. Tìm tất cả các giá trị của tham số m để phương trình 2x^2 - mx - 10 có hai nghiệm phân biệt thỏa mãn điều kiện x^2 + 12x + 8 > 0. Chứng minh tứ giác AIBH và tứ giác AHCK đều nội tiếp trong đường tròn O, với các điều kiện cụ thể. Mong rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em thành công!