Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm học 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 sở GDĐT Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 08 tháng 01 năm 2023, với đề thi có đáp án và lời giải chi tiết do các tác giả Võ Quốc Bá Cẩn, Trần Đức Hiếu, Đào Phúc Long thực hiện. Dưới đây là một số câu hỏi trong đề thi: Với a, b, c là các số nguyên dương thỏa mãn điều kiện a + b + c = 16, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a + b)/c + (b + c)/a + (c + a)/b. Cho tam giác ABC vuông tại A (AB < AC) nội tiếp đường tròn (O). Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại điểm S. Trên tia đối của tia CA lấy điểm M (M khác C). Chứng minh các điều sau: a) Đường thẳng ME là tiếp tuyến của đường tròn (O). b) EC là tia phân giác của góc FED. c) Góc SDK = 90. Cho đa giác đều A1A2...A2023. Gọi S là tập hợp gồm các trung điểm của các đoạn thẳng AiAj (1 < i < j < 2023) và M là tổng độ dài của tất cả các đoạn thẳng có hai đầu mút là hai điểm thuộc S. Gọi N là tổng độ dài của tất cả các đoạn thẳng AiAj (1 < i < j < 2023). Chứng minh rằng M < 10112N. Hy vọng rằng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho đường tròn (O). Qua điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AM, AN (M, N là hai tiếp điểm) và cát tuyến ABC với đường tròn (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh: A, M, O, I, N thuộc một đường tròn; b) Chứng minh: IA là tia phân giác của MIN; c) Vẽ dây CD song song MN, H là giao điểm của BD và MN. Chứng minh: HM = HN. + Cho phương trình: x2 – (m + 5)x + 3m + 6 = 0. Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh tam giác vuông có cạnh huyền bằng 5. + Cho biểu thức: P a) Rút gọn P; b) Tính giá trị của P với x 9 45; c) Tìm các giá trị chính phương của x để P có giá trị nguyên.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG Toán 9 năm 2016 - 2017 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2016 – 2017 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.