Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khái niệm hai tam giác đồng dạng

Nội dung Chuyên đề khái niệm hai tam giác đồng dạng Bản PDF - Nội dung bài viết Chuyên đề khái niệm hai tam giác đồng dạngKiến thức cơ bảnDạng bài tập cơ bản Chuyên đề khái niệm hai tam giác đồng dạng Chuyên đề này bao gồm 11 trang tài liệu, tóm tắt các khái niệm quan trọng về hai tam giác đồng dạng, phân loại dạng bài tập và hướng dẫn cách giải. Được tuyển chọn từ cơ bản đến nâng cao, các bài tập trong tài liệu giúp học sinh hiểu rõ về khái niệm hai tam giác đồng dạng. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. Kiến thức cơ bản Tài liệu tập trung vào những kiến thức cơ bản như cách vẽ tam giác đồng dạng với một tam giác cho trước và cách chứng minh hai tam giác đồng dạng. Học sinh sẽ được hướng dẫn xác định tỉ số đồng dạng và kẻ đường thẳng song song với một cạnh của tam giác. Dạng bài tập cơ bản Các dạng bài tập cơ bản trong tài liệu bao gồm việc vẽ tam giác đồng dạng, chứng minh hai tam giác đồng dạng thông qua việc sử dụng định nghĩa hoặc định lí. Học sinh cũng sẽ được hướng dẫn tính độ dài cạnh và tỉ số đồng dạng thông qua các tam giác đồng dạng. Trong tài liệu, cũng có dạng bài tập chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng, giúp học sinh hiểu rõ hơn về khái niệm này.

Nguồn: sytu.vn

Đọc Sách

Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. I. KIẾN THỨC TRỌNG TÂM A. Đại số. – Phân thức đại số. – Bất phương trình bậc nhất một ẩn. – Giải toán bằng cách lập phương trình: Dạng toán về năng suất, toán có nội dung hình học, toán phần trăm. B. Hình học. – Các trường hợp đồng dạng của hai tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1. Các bài toán rút gọn câu hỏi phụ. Dạng 2. Giải bài toán bằng cách lập phương trình. Dạng 3. Giải bất phương trình. Dạng 4. Hình học. Dạng 5. Các bài toán nâng cao.
Đề cương học kỳ 2 Toán 8 năm 2022 - 2023 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra cuối học kỳ 2 môn Toán 8 năm học 2022 – 2023 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. Dạng 1: Phương trình và bất phương trình. Dạng 2: Giải bài toán bằng cách lập phương trình. Dạng 3: Hình học. Dạng 4: Một số bài tập nâng cao.
Đề cương giữa kì 2 Toán 8 năm 2022 - 2023 trường THCS Dịch Vọng Hậu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn nội dung ôn tập kiểm tra giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Dịch Vọng Hậu, quận Cầu Giấy, thành phố Hà Nội. A. NỘI DUNG ÔN TẬP 1. Trả lời các câu hỏi 1, 2, 3, 4, 5 phần ôn tập chương III – Đại số SGK trang 32, 33. 2. Nắm vững các khái niệm về phương trình bậc nhất một ẩn, hai phương trình tương đương, hai quy tắc biến đổi tương đương phương trình, phương trình tích, phương trình chứa ẩn ở mẫu, điều kiện xác định của phương trình. 3. Nắm vững cách giải phương trình bậc nhất một ẩn, cách giải phương trình tích, cách giải phương trình chứa ẩn ở mẫu. 4. Học thuộc công thức tính diện tích của một số hình như: Tam giác, hình vuông, hình chữ nhật, hình thang, hình bình hành, hình thoi. 5. Học thuộc định lí Ta-lét, định lí đảo của định lí Ta-lét, hệ quả của định lí Ta-lét, tính chất đường phân giác của một tam giác. 6. Nắm vững ba trường hợp đồng dạng của tam giác. B. MỘT SỐ BÀI TẬP THAM KHẢO I. TRẮC NGHIỆM. II. BÀI TẬP TỰ LUẬN. 1. GIẢI PHƯƠNG TRÌNH. 2. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. 3. HÌNH HỌC.
Đề cương giữa kì 2 Toán 8 năm 2022 - 2023 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập kiểm tra giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM * ĐẠI SỐ: 1. Phương trình bậc nhất một ẩn và phương trình đưa được về dạng ax + b = 0. 2. Phương trình tích A(x).B(x) = 0. 3. Phương trình chứa ẩn ở mẫu. 4. Giải bài toán bằng cách lập phương trình. * HÌNH HỌC: 1. Định lý Ta-lét. 2. Hệ quả của định lý Ta-lét. 3. Tính chất đường phân giác của tam giác. 4. Các trường hợp đồng dạng của hai tam giác và tính chất của hai tam giác đồng dạng. II. CÁC ĐỀ THAM KHẢO