Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cụm trường lần 1 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An

Nội dung Đề HSG cụm trường lần 1 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An Bản PDF - Nội dung bài viết Đề HSG cụm trường lần 1 Toán lớp 8 năm 2022 - 2023 Yên Thành, Nghệ An Đề HSG cụm trường lần 1 Toán lớp 8 năm 2022 - 2023 Yên Thành, Nghệ An Chúng tôi xin gửi đến các thầy cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi cụm trường lần 1 môn Toán cho năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi trong đề thi bao gồm: Cho hình vuông ABCD, có độ dài mỗi cạnh bằng a. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc với AB và MF vuông góc với AD. a) Chứng minh rằng DE = CF. b) Chứng minh rằng ba đường thẳng DE, BF, CM đồng quy. c) Xác định vị trí của điểm M để diện tích tứ giác AEMF đạt giá trị lớn nhất và tìm giá trị lớn nhất đó. Cho 17 điểm nằm trong mặt phẳng, không có 3 điểm nào thẳng hàng. Nối các điểm này bằng các đoạn thẳng và tô màu xanh, đỏ hoặc vàng. Chứng minh rằng tồn tại một tam giác có các cạnh cùng màu. Cho biểu thức \(3x^2 + 3x^2 + 3x^2\). Tìm điều kiện xác định và rút gọn biểu thức Q. Tìm số hữu tỉ x sao cho biểu thức \(2x^2 + 4x^2 + x\) có giá trị là một số nguyên dương. Đây là một số câu hỏi trong đề thi Toán lớp 8 HSG cụm trường lần 1 năm học 2022 - 2023 tại Yên Thành, Nghệ An. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Yên Phong - Bắc Ninh
Đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2014. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh : + Cho hình thang ABCD vuông tại A và D. Biết CD = 2AB = 2AD và BC = a2. Gọi E là trung điểm của CD. a. Tứ giác ABED là hình gì? Tại sao? b. Tính diện tích hình thang ABCD theo a. c. Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Tính góc HDI? + Cho biểu thức. a. Rút gọn biểu thức A. b. Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. c. Tìm x để A. + Phần dành cho thí sinh trường đạị trà: Cho a, b, c là 3 cạnh của tam giác, p là nửa chu vi. Phần dành cho thí sinh trường THCS Yên Phong: Cho a, b, c, d là các số dương. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.