Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 9 THCS năm 2018 - 2019 sở GDĐT Đăk Lăk

Thứ Tư ngày 10 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Đăk Lăk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 9 khối THCS năm học 2018 – 2019. Đề thi học sinh giỏi tỉnh Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Đăk Lăk được biên soạn theo dạng tự luận với 06 bài toán, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết, lời giải được biên soạn bởi thầy Nguyễn Dương Hải, giáo viên trường THCS Nguyễn Chí Thanh, thành phố Buôn Ma Thuộc – Đăk Lăk. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 THCS năm 2018 – 2019 sở GD&ĐT Đăk Lăk : + Trong mặt phẳng với hệ tọa độ Oxy, một đường thẳng d có hệ số góc k đi qua điểm M(0;3) và cắt parabol (P): y = x^2 tại hai điểm A, B. Gọi C, D lần lượt là hình chiếu vuông góc của A, B lên trục Ox. Viết phương trình đường thẳng d, biết hình thang ABDC có diện tích bằng 20. + Cho hình vuông ABCD. Trên các cạnh CB, CD lần lượt lấy các điểm M, N (M không trùng với B và C; N không trùng với C và D) sao cho góc MAN = 45 độ. Chứng minh rằng đường chéo BD chia tam giác AMN thành hai phần có diện tích bằng nhau. + Tìm tất cả các số tự nhiên có bốn chữ số, biết rằng số đó bằng lập phương của tổng các chữ số của nó.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Hoàn Kiếm Hà Nội
Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD ĐT Hoàn Kiếm Hà Nội Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD ĐT Hoàn Kiếm Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2023-2024 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Năm ngày 26 tháng 10 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán lớp 9 năm 2023-2024 phòng GD&ĐT Hoàn Kiếm - Hà Nội: Cho a, b là các số nguyên thỏa mãn a^2 + 2b + 3 và b^2 + 2a + 3 đều chia hết cho 5. Chứng minh a + b + 2023 chia hết cho 5. Cho tam giác ABC nhọn, cân tại A, đường cao AM. Đường thẳng qua B và vuông góc với AB, cắt tia AM tại D. Lấy điểm F bất kì nằm giữa hai điểm B và M. Gọi E là hình chiếu vuông góc của A trên đường thẳng DF. Chứng minh DE·DF = DM·DA và DBF = DEB. Gọi O là trung điểm của AD. Đường thẳng qua O và vuông góc với EC, cắt EA tại S. Chứng minh tam giác EBF đồng dạng với tam giác SOE. Gọi K là trung điểm của EF. Chứng minh CK vuông góc với SD. Cho bảng ô vuông n x n. Cần điền vào mỗi ô vuông 1 × 1 của bảng một số nguyên thỏa mãn các điều kiện sau: Tổng các số trong mỗi mảng ô vuông 3 × 3 luôn dương. Tổng các số trong mỗi mảng ô vuông 4 × 4 luôn âm. Chỉ ra một cách điền số thỏa mãn với n = 5. Tìm điều kiện của n để tồn tại một cách điền số thỏa mãn.
Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Nghi Xuân Hà Tĩnh
Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Nghi Xuân Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Nghi Xuân - Hà Tĩnh Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Nghi Xuân - Hà Tĩnh Xin chào quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2023 - 2024 của phòng Giáo dục và Đào tạo huyện Nghi Xuân, tỉnh Hà Tĩnh. Đề thi bao gồm các câu hỏi sau: 1. Viết số \(2023^{2023}\) thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu? 2. Tam giác ABC cân tại A, biết AB = 2cm và góc A bằng 36°. Hãy tính độ dài BC. 3. Cho tam giác nhọn ABC (AB < AC). Ba đường cao AD, BE và CF cắt nhau tại H. Gọi I là giao điểm EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a. Chứng minh: Tam giác AEF đồng dạng với tam giác ABC. b. Chứng minh: IP = IQ. c. Gọi M là trung điểm của AH, chứng minh I là trực tâm của tam giác BMC. Hy vọng đề thi sẽ giúp các em thực sự rèn luyện và phát huy kiến thức Toán của mình. Chúc các em học tốt và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán cấp huyện năm 2023 2024 phòng GD ĐT Ba Vì Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp huyện năm 2023 2024 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán cấp huyện năm 2023-2024 Đề học sinh giỏi lớp 9 môn Toán cấp huyện năm 2023-2024 Sytu xin thông báo đến quý thầy, cô và các em học sinh lớp 9 về đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2023-2024 do Phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 28 tháng 09 năm 2023, bao gồm đề thi có đáp án và hướng dẫn chấm điểm chi tiết. Trong đề thi, có một bài toán đáng chú ý: "Cho tam giác ABC cân tại A có ABC = ". Đây sẽ là một trong những câu hỏi thú vị đòi hỏi sự tư duy logic và kiến thức vững chắc về hình học mà các em học sinh lớp 9 cần phải chuẩn bị kỹ lưỡng. Chúc các em học sinh ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Lộc Hà Hà Tĩnh
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Lộc Hà Hà Tĩnh Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Lộc Hà Hà Tĩnh Đề học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Lộc Hà Hà Tĩnh Chào cả nhà, hôm nay Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi tỉnh môn Toán lớp 9 năm học 2023-2024 từ phòng Giáo dục và Đào tạo huyện Lộc Hà, tỉnh Hà Tĩnh. Đề thi bao gồm 10 câu đánh giá kết quả và 3 câu tự luận, thời gian làm bài 120 phút. Dưới đây là một số câu hỏi mà các em sẽ gặp trong đề thi: 1. Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 26cm; BH = 2cm. Tính sin BAH. 2. Cho đường tròn (O;R). Hai dây AB và CD song song nhau. Biết AB = 16 cm, CD = 12 cm, khoảng cách giữa hai dây là 14 cm. Tính R. 3. Cho đường tròn (O;R) cố định và điểm M ở ngoài (O). Từ M vẽ các tiếp tuyến MA, MB và cắt tuyến MCD. Gọi I là trung điểm của CD, H là giao điểm của AB và OM, N là giao điểm của AB và CD. a) Chứng minh AM2 = MN.MI. b) Từ O vẽ đường thẳng song song với AB cắt MA, MB lần lượt tại P và Q. Xác định vị trí của M để diện tích tam giác MPQ có giá trị nhỏ nhất. Chúc các em học sinh lớp 9 sẽ làm tốt trong kỳ thi sắp tới. Hãy ôn tập và tự tin đối diện với mọi thách thức nhé!