Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Ninh Bình

Nội dung Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát đánh giá chất lượng giáo dục môn Toán lớp 12 THPT & GDTX lần thứ nhất năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình, hướng đến kỳ thi tốt nghiệp THPT 2024 và tuyển sinh vào Đại học, Cao đẳng; kỳ thi được diễn ra vào thứ Sáu ngày 24 tháng 11 năm 2023; đề thi có đáp án mã đề 001 – 002 – 003 – 004 – 005 – 006 – 007 – 008 – 009 – 010 – 011 – 012 – 013 – 014 – 015 – 016 – 017 – 018 – 019 – 020 – 021 – 022 – 023 – 024. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 lần 1 năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Bạn Tuệ giành được học bổng 160.000 USD, bằng 80% chi phí học tập, ăn ở trong 4 năm học tại trường Đại học X, kể từ năm học 2023 – 2024. Số 20% chi phí còn lại bạn được trường cho vay không lãi trong suốt 4 năm học đại học. Từ ngày 01/9/2027, trường bắt đầu tính lãi 0,25%/tháng (thể thức lãi kép) và kể từ đó, cứ vào ngày đầu tiên của mỗi tháng tiếp theo, bạn Tuệ sẽ phải trả một số tiền không đổi cho nhà trường trong vòng 4 năm thì sẽ trả hết cả vốn lẫn lãi. Hỏi số tiền mỗi tháng bạn Tuệ sẽ phải trả cho trường đại học là bao nhiêu USD? (Kết quả làm tròn đến hàng phần chục). + Cho hàm số bậc ba y = f(x) và hàm số bậc nhất y = g(x) có đồ thị lần lượt là đường cong và đường thẳng trong hình vẽ bên. Gọi A, B lần lượt là giao điểm của đồ thị hàm số y = f(x) và y = g(x) với trục tung. Biết AB = 4, bất phương trình f(x) − 4 ≤ g(x) có bao nhiêu nghiệm nguyên trên đoạn [−10;10]? + Cho hình lập phương ABCD.A′B′C′D′. Hình hộp chữ nhật MNPQ.M′N′P′Q′ có các đỉnh thuộc các mặt của hình lập phương, đồng thời hai mặt (MNN′M′) và (PQQ′P′) chia đoạn A′C thành ba phần bằng nhau. Tỉ số thể tích của khối hộp chữ nhật MNPQ.M′N′P′Q′ và khối lập phương ABCD.A′B′C′D′ là?

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Bình Phước
Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Bình Phước gồm 6 bài toán tự luận, có lời giải chi tiết và thang điểm. Đề thi dành cho cả khối lớp THPT và GDTX. Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1; 2). Gọi M N, lần lượt là trung điểm của các cạnh CD và AD, K là giao điểm của BM với CN. Viết phương trình của đường tròn ngoại tiếp tam giác BNK, biết đường thẳng BM có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. [ads] + Cho đường tròn (O) đường kính AB, một đường thẳng d không có điểm chung với đường tròn (O) và d vuông góc với AB kéo dài tại K (B nằm giữa A và K). Gọi C là một điểm nằm trên đường tròn (O), (C khác A và B). Gọi D là giao điểm của AC và d, từ D kẻ tiếp tuyến DE với đường tròn (E là tiếp điểm và E, C nằm về hai phía của đường kính AB). Gọi F là giao điểm của EB và d, G là giao điểm của AF và (O), H là điểm đối xứng của G qua AB. Chứng minh ba điểm F, C, H thẳng hàng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với, AB = AD = a, CD = 2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt đáy bằng 45 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SD và BC.
Đề thi chọn HSG Toán 12 THPT năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc
Đề thi chọn HSG Toán 12 THPT năm học 2017 – 2018 sở GD và ĐT Vĩnh Phúc gồm 10 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cường độ động đất M được cho bởi công thức M = logA – logA0 trong đó A là biên độ rung chấn tối đa, A0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiêu lần biên độ rung chấn tối đa của trận động đất kia? [ads] + Trong không gian cho 2n điểm phân biệt (n > 4, n ∈ N), trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt. + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m – 1 (m là tham số thực). Chứng minh rằng với mọi m, đường thẳng d luôn cắt (C) tại hai điểm phân biệt A, B. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến với (C) tại A và B. Xác định m để biểu thức (3k1 + 1)^2.(3k2 + 1)^2 đạt giá trị nhỏ nhất.
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.