Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10

Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.

Nguồn: toanmath.com

Đọc Sách

Bài toán chứng minh các đường thẳng đồng quy
Tài liệu gồm 16 trang, hướng dẫn phương pháp giải bài toán chứng minh các đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. 1. CÁC PHƯƠNG PHÁP THƯỜNG ĐƯỢC SỬ DỤNG Cách 1 . Lợi dụng định lí về các đường đồng quy trong tam giác. + Sử dụng định lí ba đường cao của tam giác đồng quy tại một điểm + Sử dụng định lí ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm đó gọi là trọng tâm của tam giác. + Sử dụng các định lí: 1.Ba đường phân giác của tam giác đồng quy tại một điểm. + Giao điểm của hai đường phân giác ngoài nằm trên đường phân giác trong của góc thứ ba. + Sử dụng định lí ba đường trung trực của tam giác đồng quy tại một điểm. Cách 2 . Sử dụng tính chất các đường chéo cắt nhau tai trung điểm mỗi đường của của hình bình hành, hình chữ nhật, hình thoi, hình vuông. Cách 3 . Lùi về quen thuộc, chứng minh ba điểm thẳng hàng hoặc giao điểm của hai đường nằm trên đường thẳng thứ ba. 2. BÀI TẬP ÁP DỤNG
Các bài toán chứng minh ba điểm thẳng hàng
Tài liệu gồm 21 trang, hướng dẫn phương pháp giải bài toán chứng minh ba điểm thẳng hàng, đây là dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán. 1. Phương pháp chứng minh ba điểm thẳng hàng Phương pháp 1. Chứng minh điểm A thuộc đoạn thẳng BC. Phương pháp 2. Chứng minh qua 3 điểm xác định một góc bẹt (180 độ). Phương pháp 3. Chứng minh hai góc ở vị trí đối đỉnh mà bằng nhau. Phương pháp 4. Chứng minh 3 điểm xác định được hai đường thẳng cùng vuông góc hay cùng song song với một đường thẳng thứ 3 (tiên đề Ơclit). Phương pháp 5. Dùng tính chất đường trung trực: chứng minh 3 điểm đó cùng cách đều hai đầu đoạn thẳng. Phương pháp 6. Dùng tính chất tia phân giác: chứng minh 3 điểm đó cùng cách đều hai cạnh của một góc. Phương pháp 7. Sử dụng tính chất đồng quy của các đường: trung tuyến, phân giác, đường cao trong tam giác. Phương pháp 8. Sử dụng tính chất đường chéo của các tứ giác đặc biệt: hình vuông, hình chữ nhật, hình thoi, hình bình hành, hình thang. Phương pháp 9. Sử dụng tính chất tâm và đường kính của đường tròn. Phương pháp 10. Sử dụng tính chất hai đường tròn tiếp xúc nhau. 2. Ví dụ minh họa
Các bài toán chứng minh đẳng thức hình học
Với bài toán hình học trong đề thi tuyển sinh vào lớp 10 môn Toán, sẽ có những yêu cầu chứng minh hai đoạn thẳng bằng nhau hoặc các đoạn thẳng tỷ lệ … mà ta gọi chung là đẳng thức hình học. Tài liệu dưới đây sẽ hệ thống một số biện pháp chứng minh đẳng thức hình học. Dạng toán đẳng thức hình học là một dạng toán cũng không khó nhưng nó đòi hỏi người giải phải có cái nhìn nhanh (tiết kiệm thời gian) và chuẩn (giải đúng kiếm điểm), xác định đúng phương pháp vô cùng quan trọng. Chính vì vậy việc tự luyện giải nhiều bài toán hình học sẽ giúp cho các em có kỹ năng giải. PHẦN 1 . LÝ THUYẾT CHỨNG MINH ĐẲNG THỨC HÌNH HỌC. A. CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU. Phương pháp 1: Hai tam giác bằng nhau. Phương pháp 2: Sử dụng tính chất của các hình đặc biệt. 1. Hai cạnh bên của tam giác cân, tam giác đều. 2. Sử dụng tính chất về cạnh và đường chéo của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật, hình vuông, hình thoi. Phương pháp 3: Sử dụng tính chất của các đường đặc biệt, điểm đặc biệt. 1. Sử dụng tính chất đường trung tuyến (đường thẳng đi qua trọng tâm tam giác), đường trung tuyến của tam giác vuông, đường trung bình trong tam giác, các đường đồng quy trong tam giác đặc biệt. 2. Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó. 3. Khoảng cách từ một điểm trên đường trung trực của một đoạn thẳng đến hai đầu đoạn thẳng. 4. Sử dụng tính chất trung điểm. 5. Hình chiếu của hai đường xiên bằng nhau và ngược lại. Phương pháp 4: Sử dụng các tính chất liên quan đến đường tròn. 1. Sử dụng tính chất hai dây cách đều tâm trong đường tròn. 2. Sử dụng tính chất hai tiếp tuyến giao nhau trong đường tròn. 3. Sử dụng quan hệ giữa cung và dây cung trong một đường tròn. Phương pháp 5: Sử dụng tỉ số, đoạn thẳng trung gian. 1. Dùng tính chất bắc cầu: Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba. 2. Có cùng độ dài (cùng số đo) hoặc cùng nghiệm đúng một hệ thức. 3. Đường thẳng song song cách đều. 4. Sử dụng tính chất của các đẳng thức, hai phân số bằng nhau. 5. Sử dụng kiến thức về diện tích. 6. Sử dụng bình phương của chúng bằng nhau (có thể sử dụng định lí Pitago, tam giác đồng dạng, hệ thức lượng trong tam giác, trong đường tròn để đưa về bình phương của chúng bằng nhau). B. CHỨNG MINH HAI ĐOẠN THẲNG TỈ LỆ. 1. Tính chất trung điểm của đoạn thẳng. 2. Tính chất ba đường trung tuyến trong tam giác. 3. Đường trung bình. 4. Định lý Talet. 5. Tính chất đường phân giác của tam giác. 6. Các trường hợp đồng dạng của tam giác. 7. Hệ thức lượng trong tam giác vuông. 8. Tỉ số lượng giác của góc nhọn. PHẦN 2 . BÀI TẬP CHỨNG MINH ĐẲNG THỨC HÌNH HỌC PHẲNG.
Phương pháp giải phương trình nghiệm nguyên
Tài liệu gồm 38 trang, hướng dẫn một số phương pháp giải phương trình nghiệm nguyên, đây là dạng toán thường xuất hiện trong các đề thi học sinh giỏi Toán bậc THCS. A. KIẾN THỨC CẦN NHỚ 1. Phương trình nghiệm nguyên là phương trình có nhiều ẩn số, tất cả các hệ số của phương trình đều là số nguyên. Các nghiệm cần tìm cũng là số nguyên. 2. Phương trình nghiệm nguyên không có công thức giải tổng quát, chỉ có cách giải của một số dạng. Trong chuyên đề này được giới thiệu qua một số ví dụ và bài tập cụ thể. 3. Cách giải phương trình nghiệm nguyên rất đa dạng, đòi hỏi học sinh phân tích, dự đoán, đối chiếu và tư duy sáng tạo, lôgic để tìm nghiệm. B. CÁC DẠNG BÀI TẬP Dạng 1: Phương pháp đưa về phương trình ước số. Dạng 2: Phương pháp sử dụng tính chất chia hết. Dạng 3: Phương pháp xét số dư từng vế. Dạng 4: Phương pháp đưa về dạng tổng. Dạng 5: Phương pháp sử dụng bất đẳng thức. Dạng 6: Phương pháp đánh giá. Dạng 7: Phương pháp giải lùi vô hạn, nguyên tắc cực hạn. C. BÀI TẬP TỰ LUYỆN