Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình thang cân

Nội dung Chuyên đề hình thang cân Bản PDF - Nội dung bài viết Chuyên đề hình thang cânTóm tắt lý thuyếtBài tập và các dạng toán Chuyên đề hình thang cân Chuyên đề hình thang cân là tài liệu học tập gồm 19 trang, cung cấp thông tin chi tiết về lý thuyết về hình thang cân, phân loại các dạng toán và hướng dẫn giải, đồng thời cung cấp các bài tập từ cơ bản đến nâng cao về chuyên đề này. Tài liệu này được tuyển chọn đặc biệt để hỗ trợ học sinh trong quá trình học tập hình học chương trình lớp 8 - chương 1: Tứ giác. Tóm tắt lý thuyết Trước hết, tài liệu giải thích khái niệm về hình thang cân, tức là hình thang có hai góc kề một đáy bằng nhau. Ngoài ra, tài liệu cũng nêu các tính chất quan trọng của hình thang cân như hai cạnh bên bằng nhau và hai đường chéo bằng nhau. Dấu hiệu nhận biết hình thang cân cũng được đề cập. Bài tập và các dạng toán Trong phần này, tài liệu bao gồm các dạng bài toán minh họa như tính số đo góc, độ dài cạnh và diện tích hình thang cân. Các phương pháp giải bài toán được trình bày chi tiết, giúp học sinh hiểu rõ và áp dụng vào thực hành. Ngoài ra, tài liệu cung cấp các bài toán chứng minh hình thang cân và chứng minh các cạnh, góc bằng nhau trong hình thang cân. Để hỗ trợ việc tự luyện, tài liệu cung cấp phiếu bài tập tự luyện, giúp học sinh rèn luyện kỹ năng và kiến thức về chuyên đề hình thang cân.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề diện tích đa giác
Tài liệu gồm 06 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích đa giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Để tính diện tích đa giác, ta thường chia đa giác đó thành các tam giác, các tứ giác tính được diện tích rồi tính tổng các diện tích đó; hoặc tạo ra một đa giác nào đó có chứa đa giác ấy rồi tính hiệu các diện tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2. Tính diện tích của đa giác bất kì. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3. Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thoi
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thoi, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. KIẾN THỨC CƠ BẢN + Diện tích tứ giác có hai đường chéo vuông góc bằng nửa tích hai đường chéo. + Diện tích hình thoi bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. II. MỘT SỐ DẠNG BÀI Dạng 1: Tính diện tích của tứ giác có hai đường chéo vuông góc. Dạng 2: Tính diện tích hình thoi. Dạng 3: Tìm diện tích lớn nhất (nhỏ nhất) của một hình. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích hình thang
Tài liệu gồm 08 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT + Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao. + Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích hình thang. Phương pháp giải: Sử dụng công thức tính diện tích hình thang. Dạng 2. Tính diện tích hình bình hành. Phương pháp giải: Sử dụng công thức tính diện tích hình bình hành. Dạng 3. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 4. Tìm diện tích lớn nhất (nhỏ nhất) của một hình. Phương pháp giải: + Kí hiệu maxS là giá trị lớn nhất của biểu thức S, minS là giá trị nhỏ nhất của biểu thức S. + Sử dụng tính chất đường vuông góc ngắn hcm đường xiên. + Nếu diện tích của một hình luôn nhỏ hon hoặc bằng một hằng số M và tồn tại một ví trí của hình để diện tích bằng M thì M là diện tích lớn nhất của hình. Tương tự với trường hợp diện tích nhỏ nhất. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề diện tích tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Lưu ý: + Nếu hai tam giác có một cạnh bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các chiều cao tương ứng. + Nếu hai tam giác có một đường cao bằng nhau thì tỉ số diện tích hai tam giác đó bằng tỉ số các cạnh tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính toán, chứng minh về diện tích tam giác. Phương pháp giải: Sử dụng công thức tính diện tích tam giác. Dạng 2. Tính độ dài đoạn thẳng bằng cách sử dụng công thức tính diện tích tam giác. Dạng 3. Sử dụng công thức tính diện tích để chứng minh các hệ thức. Phương pháp giải: Phát hiện quan hệ về diện tích trong hình rồi sử dụng các công thức tính diện tích. Dạng 4. Tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích. Phương pháp giải: Dùng công thức tính diện tích dẫn đến điều kiện về vị trí điểm, thường liên quan đến khoảng cách từ một điểm đến một đường thẳng. Dạng 5. Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải: Để tìm diện tích lớn nhất hoặc nhỏ nhất cùa một hình, ta có thể sử dụng mối quan hệ giữa đường vuông góc và đường xiên. B. PHIẾU BÀI TỰ LUYỆN