Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 2020

Nội dung Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 2020 Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020, kỳ thi diễn ra trong các ngày 27 và 28 tháng 12 năm 2019. Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 (VMO 2019 – 2020) gồm tổng cộng 07 bài toán: Giới hạn dãy số, Bất đẳng thức, Dãy số nguyên, Hình học phẳng, Hệ phương trình, Hình học phẳng, Tổ hợp. Tổng quan về đề thi, có thể nói đề ngày 1 so với “cùng kỳ năm trước” quả thật rất khác. Các câu hỏi đều có ý a để dẫn dắt gợi mở và thậm chí là cho điểm. Ý tưởng tuy không mới mẻ bằng năm trước nhưng cũng là các thử thách đáng kể với thí sinh. Hầu hết các thí sinh nếu ôn luyện cẩn thận sẽ làm tốt 4 ý a, và có thể làm thêm 1 ý b nào đó nữa. Các ý b có độ khó cũng khá tương đương nhau, tùy vào sở trường của thí sinh, nhưng nhìn chung số bạn làm được trọn vẹn cả bài hình là không nhiều. Ngày thi thứ hai có một bất ngờ lớn khi xuất hiện câu biện luận hệ phương trình cũng như ý tổ hợp a quá nhẹ nhàng. Các câu hệ a và tổ a xem như cho điểm hoàn toàn. Cả câu hình và tổ b cũng ở mức trung bình (xây dựng mô hình khá đơn giản). Tuy nhiên, câu hệ b và tổ c quả thực là thách thức lớn, đòi hỏi phải kỹ năng xử lý tình huống tốt. Nhưng nói chung, đề thi năm nay mới mẻ, đòi hỏi thí sinh vừa phải nắm chắc kiến thức, vừa phải có ít nhiều sáng tạo mới có thể làm trọn vẹn được. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 : + Cho số nguyên dương n > 1. Ký hiệu T là tập hợp tất cả các bộ có thứ tự (x, y, z) trong đó x, y, z là các số nguyên dương đôi một khác nhau và 1 ≤ x, y, z ≤ 2n. Một tập hợp A các bộ có thứ tự (u, v) được gọi là “liên kết” với T nếu với mỗi phần tử (x, y, z) ∈ T thì {(x, y),(x, z),( y, z)} ∩ A = ∅. a) Tính số phần tử của T. b) Chứng minh rằng tồn tại một tập hợp liên kết với T có đúng 2n(n − 1) phần tử. c) Chứng minh rằng mỗi tập hợp liên kết với T có không ít hơn 2n(n− 1) phần tử. + Cho dãy số (an) xác định bởi a1 = 5, a2 = 13 và an+1 = 5an – 6an-1 với mọi n lớn hơn hoặc bằng 2. a) Chứng minh rằng hai số hạng liên tiếp của dãy trên nguyên tố cùng nhau. b) Chứng minh rằng nếu p là ước nguyên tố của a2^k thì (p – 1) chia hết cho 2^(k + 1) với mọi số tự nhiên k. [ads] + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và có trực tâm H. Gọi D, E, F lần lượt là các điểm đối xứng của O qua các đường thẳng BC, CA, AB. a) Gọi Ha là điểm đối xứng của H qua BC, A’ là điểm đối xứng của A qua O và Oa là tâm của đường tròn ngoại tiếp tam giác BOC. Chứng minh rằng HaD và OaA’ cắt nhau trên (O). b) Lấy điểm X sao cho tứ giác AXDA’ là hình bình hành. Chứng minh rằng ba đường tròn ngoại tiếp các tam giác AHX, ABF và ACE có một điểm chung thứ hai khác A.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Thái Nguyên Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Thái Nguyên gồm 5 bài toán tự luận, thời gian làm bài 180 phút. Kỳ thi diễn ra vào ngày 12/10/2017.
Đề thi chọn HSG cấp tỉnh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG cấp tỉnh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hải Dương Bản PDF Đề thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100.000.000 đồng và dưới nước là 260.000.000 đồng. [ads] + Trong mặt phẳng Oxy, cho đường tròn (I) có hai đường kính AB và MN với A B (1;3), (3; -1). Tiếp tuyến của (I) tại B cắt các đường thẳng AM và AN lần lượt tại E và F. Tìm tọa độ trực tâm H của tam giác MEF sao cho H nằm trên đường thẳng d: x – y + 6 = 0 và có hoành độ dương. + Tìm tất cả các giá trị của m để đồ thị hàm số y = x^3 – 3mx + 1 có hai điểm cực trị A, B sao cho diện tích ΔIAB bằng 8√2.
Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận
Nội dung Đề thi thành lập đội tuyển HSG lớp 12 môn Toán dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận Bản PDF Đề thi thành lập đội tuyển HSG Toán lớp 12 THPT dự thi Quốc gia năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 4 bài toán tự luận, có lời giải chi tiết.
Đề thi chọn HSG lớp 12 môn Toán cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận
Nội dung Đề thi chọn HSG lớp 12 môn Toán cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận Bản PDF Đề thi chọn HSG Toán lớp 12 cấp tỉnh năm học 2016 – 2017 sở GD và ĐT Bình Thuận gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số câu trong đề thi : + Trong một buổi tiệc có 10 chàng trai, mỗi chàng trai dẫn theo một cô gái. a) Có bao nhiêu cách xếp họ ngồi thành một hàng ngang sao cho các cô gái ngồi cạnh nhau, các chàng trai ngồi cạnh nhau và có một chàng trai ngồi cạnh cô gái mà anh ta dẫn theo? b) Ký hiệu các cô gái là G1, G2, … G10. Xếp hết 20 người ngồi thành một hàng ngang sao cho các điều kiện sau được đồng thời thỏa mãn: 1. Thứ tự ngồi của các cô gái, xét từ trái sang phải là G1, G2, … G10. 2. Giữa G1 và G2 có ít nhất 2 chàng trai. 3. Giữa G8 và G9 có ít nhất 1 chàng trai và nhiều nhất 3 chàng trai. Hỏi có tất cả bao nhiêu cách xếp như vậy + Cho tam giác ABC với I là tâm đường tròn nội tiếp và M là một điểm nằm trong tam giác. Gọi A1, B1, C1 là các điểm đối xứng với điểm M lần lượt qua các đường thẳng A1, B1, C1. Chứng minh rằng các đường thẳng A1, B1, C1 đồng quy.