Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức đóng vai trò quan trọng trong quá trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em thể hiện kiến thức, năng lực và xác định hướng đi tiếp theo trong sự nghiệp học tập của mình. Trong số các môn thi được chú trọng, môn Toán luôn được coi là bài kiểm tra khó khăn và quyết định sự đậu rớt của nhiều học sinh. Đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Lâm Đồng đã được tổ chức vào ngày .../06/2019. Trong đó, có một số câu hỏi rất thú vị và đòi hỏi sự tư duy logic, khả năng phán đoán và tính toán chính xác từ các thí sinh. Ví dụ, một câu hỏi đề cập đến việc tính số học sinh trong lớp 9A dựa trên thông tin về việc trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ. Câu hỏi khác liên quan đến định lý hình học, yêu cầu thí sinh chứng minh một tứ giác nội tiếp trong một tình huống cụ thể. Thông qua việc xem xét và giải quyết các bài tập trong đề thi Toán của kỳ tuyển sinh này, học sinh có cơ hội thực hành, rèn luyện và phát triển kỹ năng toán học của mình. Đồng thời, đề thi cũng giúp quý thầy cô, phụ huynh và những người quan tâm có cái nhìn rõ hơn về trình độ và sự chuẩn bị của học sinh trước kỳ thi quan trọng này. Hy vọng rằng, mỗi em học sinh sẽ tự tin và thành công trên con đường học tập của mình sau kỳ thi tuyển sinh vào lớp 10 THPT tại Lâm Đồng.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) được dành chung cho tất cả các thí sinh thi vào các lớp chuyên Toán, Văn và Tiếng Anh; kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường ĐHSP – TP HCM (chung) : + Lớp 10 chuyên Anh của trường Trung học Thực hành có bốn Tổ học sinh, số học sinh trong mỗi tổ bằng nhau. Trong một bài kiểm tra Anh văn, một số bạn được điểm 8, các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Hỏi lớp có bao nhiêu học sinh và có bao nhiêu bạn được 9 điểm bài kiểm tra Anh văn. [ads] + Cho một tấm tôn hình vuông. Người ta cắt ở bốn góc của tấm tôn đó bốn hình vuông nhỏ bằng nhau, mỗi hình vuông nhỏ có cạnh bằng 2 cm rồi gập tấm tôn lại như hình vẽ dưới đây để được một cái hộp không nắp. Tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. + Cho tam giác ABC vuông cân tại A. Vẽ trung tuyến BM. Đường tròn tâm O, đường kính CM cắt cạnh BC tại N. Vẽ đường kính NK của đường tròn (O), AK cắt đường tròn (O) tại E (E khác K). Chứng minh rằng ba điểm B, M, E thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc (chuyên)
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc (chuyên) dành cho thí sinh thi vào các lớp chuyên Toán và chuyên Tin; đề gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc (chuyên) : + Tìm tất cả các số nguyên dương a, b, c, d thỏa mãn a! + b! + c! = d!. Cho biết kí hiệu n! là tích các số tự nhiên từ 1 đến n. [ads] + Cho tam giác nhọn ABC có AB < AC và nội tiếp đường tròn (O). Gọi I là tâm đường tròn nội tiếp tam giác ABC, tia AI cắt đường tròn (O) tại điểm D (khác A). Đường thẳng OD cắt đường tròn (O) tại điểm E (khác D) và cắt cạnh BC tại điểm F. a) Chứng minh rằng tam giác ABD cân. Xác định tâm đường tròn ngoại tiếp tam giác ABC. b) Chứng minh ID.IE = IF.DE. c) Gọi các điểm M, N lần lượt là hình chiếu vuông góc của I trên các cạnh AB, AC. Gọi H, K lần lượt là các điểm đối xứng với M, N qua I. Biết rằng AB + AC = 3.BC, chứng minh KBI = HCl. + Thầy Du viết số 2020^2021 thành tổng của các số nguyên dương rồi đem cộng tất cả các chữ số của các số nguyên dương này với nhau. Hỏi thầy Du có thể nhận được kết quả là số 2021 hoặc 2022 được không? Tại sao?
Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên)
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường THPT chuyên Hà Tĩnh (chuyên) dành cho thí sinh thi vào các lớp chuyên Toán, kỳ thi diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường THPT chuyên Hà Tĩnh (chuyên) : + Tồn tại hay không số nguyên dương n sao cho 2n + 2021 và 3n + 2020 đều là các số chính phương. + Tìm tất cả các cặp số nguyên dương (x;y) sao cho (x^2 – 2)/(xy + 2) có giá trị là số nguyên. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại A và B sao cho hai tâm O và O’ nằm khác phía đối với đường thẳng AB. Đường thẳng d thay đổi đi qua B cắt các đường tròn (O) và (O’) lần lượt tại C và D (d không trùng với đường thẳng AB). a) Xác định vị trí của đường thẳng d sao cho đoạn thẳng CD có độ dài lớn nhất. b) Gọi M là điểm di chuyển từ điểm A, ngược chiều kim đồng hồ trên đường tròn (O); N là điểm di chuyển từ điểm A, cùng chiều kim đồng hồ trên đường tròn (O’) sao cho AOM luôn bằng AO’N. Chứng minh đường trung trực của MN luôn đi qua một điểm cố định.
Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Hà Nam (chuyên)
Đề tuyển sinh 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam (chuyên) dành cho thí sinh thi vào các lớp chuyên Toán tại các trường THPT chuyên thuộc sở Giáo dục và Đào tạo tỉnh Hà Nam. Trích dẫn đề tuyển sinh 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam (chuyên) : + Giải hệ phương trình. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AH. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi A’ là điểm đối xứng với A qua O. Đường thẳng MA’ cắt các đường thẳng AH, BC theo thứ tự tại N và K. Gọi L là giao điểm của MA và BC. Đường thẳng A’I cắt đường tròn (O) tại điểm thứ hai D. Hai đường thẳng AD và BC cắt nhau tại điểm S. [ads] 1. Chứng minh tam giác ANA’ là tam giác cân và MA’.MK = ML.MA. 2. Chứng minh MI^2 = ML.MA và tứ giác NHIK là tứ giác nội tiếp. 3. Gọi I là trung điểm của cạnh SA, chứng minh ba điểm T, I, K thẳng hàng. 4. Chứng minh nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2^x – y^2 + 4y + 61 = 0.