Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức đóng vai trò quan trọng trong quá trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em thể hiện kiến thức, năng lực và xác định hướng đi tiếp theo trong sự nghiệp học tập của mình. Trong số các môn thi được chú trọng, môn Toán luôn được coi là bài kiểm tra khó khăn và quyết định sự đậu rớt của nhiều học sinh. Đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Lâm Đồng đã được tổ chức vào ngày .../06/2019. Trong đó, có một số câu hỏi rất thú vị và đòi hỏi sự tư duy logic, khả năng phán đoán và tính toán chính xác từ các thí sinh. Ví dụ, một câu hỏi đề cập đến việc tính số học sinh trong lớp 9A dựa trên thông tin về việc trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ. Câu hỏi khác liên quan đến định lý hình học, yêu cầu thí sinh chứng minh một tứ giác nội tiếp trong một tình huống cụ thể. Thông qua việc xem xét và giải quyết các bài tập trong đề thi Toán của kỳ tuyển sinh này, học sinh có cơ hội thực hành, rèn luyện và phát triển kỹ năng toán học của mình. Đồng thời, đề thi cũng giúp quý thầy cô, phụ huynh và những người quan tâm có cái nhìn rõ hơn về trình độ và sự chuẩn bị của học sinh trước kỳ thi quan trọng này. Hy vọng rằng, mỗi em học sinh sẽ tự tin và thành công trên con đường học tập của mình sau kỳ thi tuyển sinh vào lớp 10 THPT tại Lâm Đồng.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 cấp THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Điện Biên : + Một ô tô và một xe máy khởi hành cùng một lúc để đi từ A đến B với vận tốc mỗi xe không đổi trên toàn bộ quãng đường AB. Biết quãng đường AB dài 240 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 20 km/h nên ô tô đến B sớm hơn xe máy 2 giờ. Tính vận tốc mỗi xe. + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = −2x + m (với m là tham số). Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thoả mãn: y1 + y2 + 3x1x2 = 1. + Cho đường tròn (O;R), đường kính AB. Kẻ Ax là tiếp tuyến của đường tròn tâm O. Trên tia Ax lấy điểm C (C khác A), CB cắt đường tròn tại điểm D. Gọi I là giao điểm của OC và AD. Kẻ AH vuông góc với OC tại điểm H, AH cắt BC tại điểm M. a) Chứng minh tứ giác DMHI nội tiếp đường tròn. b) Chứng minh OH.OC = R2 và tam giác OHB đồng dạng với tam giác OBC. c) Chứng minh MD/MB = HD/HB.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hệ thống cáp treo núi Bà Đen tỉnh Tây Ninh gồm hai tuyến Vân Sơn và Chùa Hang có tổng cộng 191 cabin, mỗi cabin có sức chứa 10 người. Nếu tất cả các cabin của hai tuyến đều chứa đủ số người theo qui định thì số người ở tuyến Vân Sơn nhiều hơn số người ở tuyến Chùa Hang là 350 người. Tính số cabin của mỗi tuyến. + Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A vẽ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Gọi D là trung điểm của đoạn thẳng AC, BD cắt (O) tại E (khác B) và BC cắt OA tại F. Chứng minh bốn điểm C, D, E, F cùng thuộc một đường tròn. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là trung điểm của HB và HC. Kẻ MK vuông góc với AN tại K, MK cắt AH tại I. Tính AH/AI.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào chiều thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hải Dương : + Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4 cây. Hỏi lúc đầu đội công nhân có bao nhiêu người? + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1 + 2×2 = m + 3. + Cho tam giác ABC có ba góc nhọn và các đường cao AF, BD, CE cắt nhau tại H. 1. Chứng minh rằng: DAH = DEH. 2. Gọi O và M lần lượt là trung điểm của BC và AH. Chứng minh rằng: tứ giác MDOE nội tiếp. 3. Gọi K là giao điểm của AH và DE. Chứng minh rằng: AH2 = 2MK(AF + HF).
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân làm chung một công việc thì làm xong trong 12 ngày. Khi làm riêng, để hoàn thành công việc trên thì đội thứ nhất cần nhiều thời gian hơn đội thứ hai là 10 ngày. Hỏi nếu làm riêng thì trong bao nhiêu ngày mỗi đội sẽ làm xong công việc trên? + Một dụng cụ gồm hai phần: một phần có dạng hình trụ, phần còn lại có dạng hình nón với các kích thước cho như hình vẽ bên. a) Tính chiều cao của phần dụng cụ có dạng hình nón. b) Tính thể tích dụng cụ đã cho (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Lấy điểm H nằm giữa O và B (H khác O và H khác B), vẽ dây cung MN của đường tròn (O) vuông góc với AB tại H. Trên đường thẳng MN lấy điểm C nằm ngoài đường tròn (O) sao cho CM > CN. Đoạn thẳng AC cắt đường tròn (O) tại điểm K (K khác A). Hai dây cung MN và BK cắt nhau tại E. a) Chứng minh tứ giác AHEK là tứ giác nội tiếp. b) Chứng minh CN.CM = CK.CA. c) Từ điểm N vẽ đường thẳng vuông góc với đường thẳng AC, đường thẳng này cắt tia MK tại F. Chứng minh tam giác KFN là tam giác cân.