Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Đề tuyển sinh THPT môn Toán sở GD ĐT Lâm Đồng năm 2019 - 2020 Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức đóng vai trò quan trọng trong quá trình học tập của học sinh tại tỉnh này. Đây là cơ hội để các em thể hiện kiến thức, năng lực và xác định hướng đi tiếp theo trong sự nghiệp học tập của mình. Trong số các môn thi được chú trọng, môn Toán luôn được coi là bài kiểm tra khó khăn và quyết định sự đậu rớt của nhiều học sinh. Đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 - 2020 môn Toán sở GD&ĐT Lâm Đồng đã được tổ chức vào ngày .../06/2019. Trong đó, có một số câu hỏi rất thú vị và đòi hỏi sự tư duy logic, khả năng phán đoán và tính toán chính xác từ các thí sinh. Ví dụ, một câu hỏi đề cập đến việc tính số học sinh trong lớp 9A dựa trên thông tin về việc trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ. Câu hỏi khác liên quan đến định lý hình học, yêu cầu thí sinh chứng minh một tứ giác nội tiếp trong một tình huống cụ thể. Thông qua việc xem xét và giải quyết các bài tập trong đề thi Toán của kỳ tuyển sinh này, học sinh có cơ hội thực hành, rèn luyện và phát triển kỹ năng toán học của mình. Đồng thời, đề thi cũng giúp quý thầy cô, phụ huynh và những người quan tâm có cái nhìn rõ hơn về trình độ và sự chuẩn bị của học sinh trước kỳ thi quan trọng này. Hy vọng rằng, mỗi em học sinh sẽ tự tin và thành công trên con đường học tập của mình sau kỳ thi tuyển sinh vào lớp 10 THPT tại Lâm Đồng.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Năm ngày 09 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một xưởng may phải may 280 bộ quần áo. Khi thực hiện, mỗi ngày xưởng may được nhiều hơn 5 bộ quần áo so với số bộ phải may trong một ngày theo kế hoạch. Vì thế xưởng đã hoàn thành công việc sớm một ngày so với kế hoạch. Hỏi theo kế hoạch ban đầu, mỗi ngày xưởng phải may bao nhiêu bộ quần áo? + Một hình nón có bán kính đáy r = 3cm và đường cao h = 4cm. Tính thể tích của hình nón (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Điểm C nằm trên đường tròn sao cho CA > CB. Từ điểm O vẽ đường thẳng vuông góc với đường thẳng AC, đường thẳng này cắt tiếp tuyến tại A của đường tròn tâm O tại điểm M và cắt đường thẳng AC tại điểm I. Đường thẳng MB cắt đường tròn tâm O tại điểm thứ hai Q (Q khác B). a) Chứng minh tứ giác AlQM là tứ giác nội tiếp. b) Chứng minh rằng MQ.MB = MO.MI.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Sơn La, tỉnh Sơn La; đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Sơn La : + Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 – k tại một điểm nằm trên trục hoành. + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 – x2| > 3. + Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. a) Chứng minh tứ giác BMHD nội tiếp được đường tròn và DA là tia phân giác của góc MDC. b) Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. c) Cho P = AB2 + AC2 + CD2 + BD2. Tính giá trị biểu thức P theo R.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi mã đề 117 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị phát đề).
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi từ B về A người đó đã giảm vận tốc 10 km/h so với lúc đi nên thời gian lúc về nhiều hơn thời gian lúc đi là 30 phút. Tính vận tốc của người đó lúc đi. + Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O) (A và B là hai tiếp điểm). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D (C nằm giữa M, D và A thuộc cung nhỏ CD). a) Chứng minh tứ giác AMBO nội tiếp. b) Chứng minh MA2 = MC.MD. c) Gọi I là giao điểm của AB và MO. Chứng minh tứ giác CDOI nội tiếp. d) Kẻ đường thẳng qua D vuông góc với MO cắt (O) tại E khác D. Chứng minh ba điểm C, I, E thẳng hàng. + Với các số thực x, y, z thỏa mãn x >= 1, y >= 1, z >= 1 và x2 + 2y2 + 3z2 = 15. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z.