Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT chuyên Đại học Vinh - Nghệ An lần 2

Đề thi thử Toán THPTQG 2018 trường THPT chuyên Đại học Vinh – Nghệ An lần 2 gồm 6 trang với với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi thử được tổ chức vào chiều ngày 15/04/2018 nhằm tạo cơ hội để các em học sinh khối 12 tham gia thử sức, đánh giá năng lực bản thân, tiếp cận với các dạng toán vận dụng mới để từ đó có phương hướng ôn tập thích hợp chuẩn bị cho kỳ thi THPT Quốc gia môn Toán sẽ diễn ra vào tháng 6 năm 2018, đề thi có đáp án tất cả các mã đề 132, 209, 357, 485 và lời giải chi tiết . Trích dẫn đề thi thử Toán 2018 chuyên Đại học Vinh lần 2 : + Đầu tiết học, cô giáo kiểm tra bài cũ bằng cách gọi lần lượt từng người từ đầu danh sách lớp lên bảng trả lời câu hỏi. Biết rằng các học sinh đầu tiên trong danh sách lớp là An, Bình, Cường với xác suất thuộc bài lần lượt là 0.9, 0.7 và 0.8. Cô giáo sẽ dừng kiểm tra sau khi đã có 2 học sinh thuộc bài. Tính xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên. [ads] + Sau một tháng thi công thì công trình xây dựng Nhà học thể dục của trường X đã thực hiện được một khối lượng công việc. Nếu tiếp tục với tiến độ như vậy thì dự kiến sau đúng 23 tháng nữa công trình sẽ hoàn thành. Để hoàn thành sớm công trình và kịp thời đưa vào sử dụng, công ty xây dựng đã quyết định từ tháng thứ 2, mỗi tháng tăng 4% khối lượng công việc so với tháng trước đó. Hỏi công trình sẽ hoàn thành ở tháng thứ mấy sau khi khởi công? + Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình vẽ). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất sau 3 bước quân vua trở về ô xuất phát.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 – 102 – 103 – 104. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Cho hình trụ có đường kính đáy bằng 5. Hình vuông ABCD nội tiếp hình trụ với hai điểm A B thuộc đường tròn là đáy trên và C D thuộc đường tròn đáy dưới của hình trụ và AB < 3. Biết diện tích hình chiếu của hình vuông ABCD trên mặt đáy bằng 2 (đơn vị diện tích). Tính thể tích của khối trụ đó. + Trong hệ tọa độ Oxyz cho mặt cầu 22 2 (S) x z 1 7 y. Hỏi có bao nhiêu điểm M trên (Oxy), M có tọa độ nguyên sao cho qua M kẻ được ít nhất hai tiếp tuyến vuông góc với nhau đến mặt cầu (S)? + Cho hai hàm đa thức bậc 4 và bậc 3 là y f (x) y g (x) (hình vẽ dưới đây chỉ mang tính chất minh họa). Biết rằng hai đồ thị y g (x) y f (x) tiếp xúc nhau tại điểm có hoành độ bằng 1 và cắt nhau tại 2 điểm khác có hoành độ lần lượt là -2; 0. Gọi S1, S2 lần lượt là diện tích hình phẳng giới hạn bởi hai đồ thị trên ở nửa mặt phẳng bên trái và nửa bên phải của trục tung. Khi 2 2 15 S thì?
Đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2021 – 2022 lần 1 trường THPT Nguyễn Cảnh Chân, huyện Thanh Chương, tỉnh Nghệ An; đề thi mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi thử là 90 phút (không kể thời gian giám thị phát đề), đề thi có đáp án. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân – Nghệ An : + Trong không gian Oxyz cho điểm và mặt phẳng. Biết rằng khi tham số m thay đổi thì mặt phẳng (P) luôn tiếp xúc với hai mặt cầu cố định cùng đi qua A là (S1) và (S2). Gọi M và N là hai điểm lần lượt nằm trên (S1) và (S2). Tìm GTLN của MN? + Cho hai hàm số và (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của để và cắt nhau tại đúng bốn điểm phân biệt là? + Cho lăng trụ có chiều cao bằng 6 và đáy là tam giác đều cạnh bằng 4. Gọi M, N, P lần lượt là tâm của các mặt bên. Thể tích của khối đa diện lồi có các đỉnh là các điểm bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 9 và điểm A 2 1 2. Từ A kẻ ba tiếp tuyến bất kì AM AN AP đến S. Gọi T là điểm thay đổi trên mặt phẳng MNP sao cho từ T kẻ được hai tiếp tuyến vuông góc với nhau đến S và cả hai tiếp tuyến này đều nằm trong MNP. Khoảng cách từ T đến giao điểm của đường thẳng 1 2 1 3 x t y t z t với mặt phẳng MNP có giá trị nhỏ nhất là? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x x 2. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số 1 2 6 2 f x x m có 5 điểm cực trị. Tính tổng tất cả các phần tử của S. + Trên parabol 2 P y x lấy hai điểm A B 1 1 2 4. Gọi M là điểm trên cung AB của P sao cho diện tích của tam giác AMB lớn nhất. Biết chu vi tam giác MAB là a b c2 5 29 khi đó giá trị a b c bằng?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần thứ hai trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng – TT Huế : + Cho hàm số ƒ(x) = ax4 + bx3 + cx2 + dx + e với a b c d e là các số thực. Đồ thị của hai hàm số y = f'(x) và y= f”(x) cắt nhau tại các điểm trong đó có hai điểm là M N (tham khảo hình vẽ). Biết diện tích miền gạch chéo bằng 8. Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = f'(x) và y = f”(x). + Trong không gian Oxyz cho hai mặt phẳng (P): 3x – 4z + 8 = 0 và mặt phẳng (Q): 3x – 4z – 12 = 0. Gọi (S) là mặt cầu đi qua gốc tọa độ O và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn (C) có tâm H(a;b;c), bán kính r. Tính T. + Trên tập hợp các số phức, xét phương trình z2 – 2z + m²  = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn.