Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 - 2023 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 14 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Cho phương trình (m + 1)x3 + (3m − 1)x2 − x − 4m + 1 = 0 (với m là tham số). Tìm m để phương trình đã cho có 3 nghiệm phân biệt. + Cho 3 điểm phân biệt cố định A, B, C cùng nằm trên đường thẳng d (điểm B nằm giữa A và C), gọi I là trung điểm của đoạn thẳng BC. Đường tròn tâm O luôn đi qua hai điểm B và C (điểm O không thuộc d). Kẻ các tiếp tuyến AM,AN với đường tròn tâm O (M, N là các tiếp điểm). Đường thẳng MN cắt OA tại điểm H và cắt BC tại điểm K. 1. Chứng minh tứ giác OMNI nội tiếp và AH.OA = AN2. 2. Khi đường tròn tâm O thay đổi, chứng minh MN luôn đi qua điểm K cố định. 3. Tia AO cắt đường tròn tâm O tại hai điểm P, Q (điểm P nằm giữa A và O). Gọi D là trung điểm của đoạn thẳng HQ. Từ H kẻ đường thẳng vuông góc với MD và cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME. + Cho một bảng ô vuông kích thước 10 x 10 gồm 100 ô vuông đơn vị (cạnh bằng 1). 1. Điền vào mỗi ô vuông đơn vị một trong các số −1; 0; 1. Xét các tổng của tất cả các số đã điền trên mỗi hàng, mỗi cột và hai đường chéo của bảng đã cho. Hỏi các tổng đó có thể nhận bao nhiêu giá trị và chứng minh trong đó có hai tổng bằng nhau. 2. Điền vào mỗi ô vuông đơn vị một số nguyên dương không vượt quá 10 sao cho hai số ở hai ô chung cạnh hoặc chung đỉnh là hai số nguyên tố cùng nhau. Chứng minh trong bảng đã cho tồn tại một số được điền ít nhất 17 lần.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG Toán 9 năm 2016 - 2017 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2016 – 2017 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.
Đề thi HSG Toán 9 năm 2015 - 2016 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2015 – 2016 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.