Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề số đo góc

Nội dung Tài liệu dạy thêm học thêm chuyên đề số đo góc Bản PDF Tài liệu dạy thêm học thêm chuyên đề số đo góc là một sản phẩm giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm 14 trang, tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập về chuyên đề số đo góc.

Phần I của tài liệu là phần tóm tắt lý thuyết. Trong phần này, tài liệu giới thiệu cách đọc tên và viết kí hiệu cho các góc. Đầu tiên, để đọc tên và viết kí hiệu góc, ta cần xác định đỉnh và hai cạnh của góc. Sau đó, ta sử dụng kí hiệu và đọc tên của góc. Lưu ý là một góc có thể được gọi bằng nhiều cách.

Phần II của tài liệu chứa các dạng bài tập. Dạng bài tập đầu tiên là nhận biết góc. Để nhận biết góc, ta cần xác định đỉnh và hai cạnh của góc, sau đó kí hiệu góc và đọc tên. Lưu ý rằng một góc có thể có nhiều tên gọi.

Dạng bài tập thứ hai là tính số góc tạo thành bởi n tia chung gốc. Để tính số góc này, ta có thể vẽ hình và đếm số góc được tạo thành, hoặc sử dụng công thức.

Dạng bài tập tiếp theo là xác định các điểm nằm bên trong góc cho trước. Để xác định điểm M có nằm bên trong góc xOy hay không, ta vẽ tia OM và xét xem tia Om có nằm giữa hai tia Ox và Oy hay không. Dựa vào kết quả, ta kết luận xem điểm M có nằm bên trong góc hay không.

Dạng bài tập tiếp theo là đo góc. Để đo góc, ta đặt thước đo góc sao cho tâm thước trùng với đỉnh của góc, sau đó xoay thước sao cho một cạnh của góc đi qua vạch số 0 của thước. Bằng cách quan sát, ta tìm được số đo góc bằng cách xác định cạnh còn lại của góc đi qua vạch nào của thước.

Dạng bài tập thứ năm là vẽ góc theo điều kiện cho trước. Để vẽ góc xOy khi biết số đo bằng 0o, ta vẽ tia Ox, đặt thước đo góc sao cho tâm của thước trùng với điểm O, và đánh dấu một điểm trên vạch chia độ của thước tương ứng với số chỉ n độ. Kế tiếp, ta kẻ tia Oy đi qua điểm đã đánh dấu. Kết quả là ta có được góc xOy với số đo là n.

Dạng bài tập thứ sáu là so sánh góc. Ta đo góc rồi so sánh các số đo góc với nhau.

Dạng bài tập cuối cùng là tính góc giữa hai kim đồng hồ. Hai tia trung gốc tạo thành một góc gọi là "góc không", và số đo của góc không là 0o. Lúc một giờ, góc tạo bởi kim giờ và kim phút là 30o.

Nội dung trên là một tổng quan về tài liệu dạy thêm học thêm chuyên đề số đo góc. Tài liệu này cung cấp lý thuyết tóm tắt và phương pháp giải bài tập theo từng dạng.

Nguồn: sytu.vn

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm trung điểm của đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề trung điểm của đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Trung điểm của đoạn thẳng: Định nghĩa: Trung điểm của đoạn thẳng là điểm nằm giữa hai đầu mút của đoạn thẳng và cách đều hai đầu mút đó. Chú ý: Điểm I là trung điểm của đoạn thẳng AB. + Điểm I nằm giữa hai điểm A và B và IA IB. + Hoặc IA IB AB IA IB. + Hoặc 1 2 IA IB AB. 2. Các dạng toán thường gặp. Dạng 1: Tính độ dài đoạn thẳng. Phương pháp: Ta sử dụng: Nếu M là trung điểm của đoạn thẳng AB thì 1 2 MA MB AB. Dạng 2: Chứng tỏ một điểm là trung điểm của đoạn thẳng. Phương pháp: Để chứng tỏ điểm I là trung điểm của đoạn thẳng AB ta có 3 cách. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm đoạn thẳng, độ dài đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề đoạn thẳng, độ dài đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Đoạn thẳng AB là gì? + Đoạn thẳng AB hay đoạn thẳng BA là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. + A, B là hai đầu mút (mút) của đoạn thẳng AB. 2. Độ dài đoạn thẳng. + Mỗi đoạn thẳng có một độ dài. Khi chọn một đơn vị độ dài thì độ dài mỗi đoạn thẳng được biểu diễn bởi một số dương (thường viết kèm đơn vị). + Độ dài đoạn thẳng AB còn gọi là khoảng cách giữa hai điểm A và B. Ta quy ước khoảng cách giữa hai điểm trùng nhau bằng 0 (đơn vị). 3. So sánh độ dài hai đoạn thẳng. + Hai đoạn thẳng AB và EG có cùng độ dài. Ta viết AB EG và nói đoạn thẳng AB bằng đoạn thẳng EG. + Đoạn thẳng AB có độ dài nhỏ hơn đoạn thẳng CD. Ta viết AB CD và nói AB ngắn hơn CD. Hoặc CD AB và nói CD dài hơn AB. 4. Các dạng toán thường gặp. Dạng 1: Nhận biết đoạn thẳng. Phương pháp: Ta sử dụng định nghĩa: Đoạn thẳng AB là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. Dạng 2: Xác định số đoạn thẳng. Phương pháp: Với n điểm phân biệt cho trước n N n 2 thì số đoạn thẳng vẽ được là 1 2 n n. Dạng 3: Tính độ dài đoạn thẳng. So sánh hai đoạn thẳng. Phương pháp: + Tìm độ dài mỗi đoạn thẳng: Ta vận dụng kiến thức “Nếu điểm M nằm giữa hai điểm A và B thì AM MB AB”. + Ta so sánh các đoạn thẳng: Hai đoạn thẳng bằng nhau nếu có cùng độ dài. Đoạn thẳng lớn hơn nếu có độ dài lớn hơn. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm điểm nằm giữa hai điểm, tia
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề điểm nằm giữa hai điểm, tia, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Điểm nằm giữa hai điểm. Trong 3 điểm thẳng hàng, có một và chỉ một điểm nằm giữa hai điểm còn lại. Trong hình bên, ta nói: + Điểm C nằm giữa hai điểm A và B. + Hai điểm A và B nằm khác phía so với C. + Hai điểm A và C nằm cùng phía so với B; C và B nằm cùng phía so với A. 2. Tia. + Tia Am (tia AB) gồm điểm A, điểm B và tất cả các điểm nằm cùng phía với B đối với A. Khi đó, điểm A gọi là điểm gốc của tia Am (tia AB). + Trên đường thẳng xy lấy điểm O bất kì. Điểm O chia đường thẳng xy thành 2 phần. Hình gồm điểm O và mỗi phần đường thẳng đó gọi là 1 tia (gốc O) hay còn gọi là nửa đường thẳng gốc O. Khi đó, hai tia Ox, Oy gọi là hai tia đối nhau. 3. Các dạng toán thường gặp. Dạng 1: Nhận biết và chỉ ra điểm nằm giữa hai điểm; hai điểm nằm cùng/khác phía so với điểm khác trong 3 điểm thẳng hàng. Phương pháp: Dựa vào nhận xét “Trong 3 điểm thẳng hàng, có một và chỉ một điểm nằm giữa hai điểm còn lại”. Lưu ý: Ta chỉ xét vị trí “nằm giữa / cùng phía / khác phía” khi cho các điểm thẳng hàng. Dạng 2: Nêu khái niệm về tia. Vẽ được tia, tia đối của một tia. Phương pháp: Dựa vào định nghĩa về tia; xác định rõ điểm gốc của tia. Lưu ý: Hai tia đối nhau tạo thành 1 đường thẳng. Mỗi điểm bất kì trên đường thẳng là gốc chung của hai tia đối nhau. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm điểm và đường thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề điểm và đường thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Điểm thuộc đường thẳng. M là một điểm của đường thẳng d hay M thuộc đường thẳng d (hoặc: M nằm trên d, d đi qua M, d chứa M). Kí hiệu M d. N không là điểm của đường thẳng d hay N không thuộc đường thẳng d. Kí hiệu N d. 2. Ba điểm thẳng hàng. Với A và B là hai điểm phân biệt. Có một đường thẳng và chỉ một đường thẳng đi qua A và B. Kí hiệu là đường thẳng AB hay đường thẳng BA. Cho C là điểm khác A và B. Nếu C AB thì ba điểm A B C thẳng hàng. Ngược lại, nếu C AB thì ba điểm A B C không thẳng hàng. 3. Vị trí tương đối của hai đường thẳng. Với 1 d và 2 d là hai đường thẳng tùy ý. 1 d và 2 d song song với nhau, kí hiệu 1 2 d d nếu chúng không có điểm chung. 1 d và 2 d cắt nhau nếu chúng có một điểm chung. Điểm chung đó được gọi là giao điểm của 1 d và 2 d. Nếu 1 d và 2 d có từ hai điểm chung trở lên thì 1 d và 2 d là hai đường thẳng trùng nhau (mỗi điểm thuộc một trong hai đường thẳng đều là điểm chung của hai đường thẳng). 4. Các dạng toán thường gặp. Dạng 1 : Quan hệ giữa điểm và đường thẳng. Dạng 2 : Vị trí tương đối giữa hai đường thẳng. B. BÀI TẬP TRẮC NGHIỆM