Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 môn Toán sở GDĐT Hòa Bình

Tài liệu gồm 39 trang, được tổng hợp bởi các tác giả: Lưu Công Hoàn, Trần Thu Hà, Lê Đức Thọ, Trương Hữu Thanh, Bùi Văn Vịnh, Đào Tuấn Anh, tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo tỉnh Hòa Bình trong vòng 20 năm gần đây, từ năm học 2000 – 2001 đến năm học 2019 – 2020. 1. Đề tuyển sinh vào lớp 10 môn Toán năm học 2000 – 2001 sở GD&ĐT Hòa Bình. 2. Đề tuyển sinh vào lớp 10 môn Toán năm học 2001 – 2002 sở GD&ĐT Hòa Bình. 3. Đề tuyển sinh vào lớp 10 môn Toán năm học 2002 – 2003 sở GD&ĐT Hòa Bình. 4. Đề tuyển sinh vào lớp 10 môn Toán năm học 2003 – 2004 sở GD&ĐT Hòa Bình. 5. Đề tuyển sinh vào lớp 10 môn Toán năm học 2004 – 2005 sở GD&ĐT Hòa Bình. 6. Đề tuyển sinh vào lớp 10 môn Toán năm học 2005 – 2006 sở GD&ĐT Hòa Bình. 7. Đề tuyển sinh vào lớp 10 môn Toán năm học 2006 – 2007 sở GD&ĐT Hòa Bình. 8. Đề tuyển sinh vào lớp 10 môn Toán năm học 2007 – 2008 sở GD&ĐT Hòa Bình. 9. Đề tuyển sinh vào lớp 10 môn Toán năm học 2008 – 2009 sở GD&ĐT Hòa Bình. 10. Đề tuyển sinh vào lớp 10 môn Toán năm học 2009 – 2010 sở GD&ĐT Hòa Bình. [ads] 11. Đề tuyển sinh vào lớp 10 môn Toán năm học 2010 – 2011 sở GD&ĐT Hòa Bình. 12. Đề tuyển sinh vào lớp 10 môn Toán năm học 2011 – 2012 sở GD&ĐT Hòa Bình. 13. Đề tuyển sinh vào lớp 10 môn Toán năm học 2012 – 2013 sở GD&ĐT Hòa Bình. 14. Đề tuyển sinh vào lớp 10 môn Toán năm học 2013 – 2014 sở GD&ĐT Hòa Bình. 15. Đề tuyển sinh vào lớp 10 môn Toán năm học 2014 – 2015 sở GD&ĐT Hòa Bình. 16. Đề tuyển sinh vào lớp 10 môn Toán năm học 2015 – 2016 sở GD&ĐT Hòa Bình. 17. Đề tuyển sinh vào lớp 10 môn Toán năm học 2016 – 2017 sở GD&ĐT Hòa Bình. 18. Đề tuyển sinh vào lớp 10 môn Toán năm học 2017 – 2018 sở GD&ĐT Hòa Bình. 19. Đề tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở GD&ĐT Hòa Bình. 20. Đề tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020 sở GD&ĐT Hòa Bình.

Nguồn: toanmath.com

Đọc Sách

Bộ đề tham khảo tuyển sinh năm 2020 2021 môn Toán sở GD ĐT TP HCM
Nội dung Bộ đề tham khảo tuyển sinh năm 2020 2021 môn Toán sở GD ĐT TP HCM Bản PDF - Nội dung bài viết Bộ đề tham khảo tuyển sinh năm 2020-2021 môn Toán sở GD ĐT TP HCM Bộ đề tham khảo tuyển sinh năm 2020-2021 môn Toán sở GD ĐT TP HCM Bộ tài liệu tham khảo bao gồm 52 trang, chứa một số đề thi tham khảo cho kỳ tuyển sinh lớp 10 năm học 2020-2021 môn Toán của Sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Dưới đây là một số câu hỏi từ bộ đề tham khảo này: 1. Nam đi bộ từ nhà đến trường, sau đó quay lại nhà để lấy tập bài tập với vận tốc khác nhau. Tính quãng đường Nam đi từ nhà đến trường. 2. Chứng minh một số tính chất của hình học trong một đường tròn. 3. Tính diện tích xung quanh và thể tích của một khúc gỗ hình trụ bị cắt bởi một mặt phẳng song song với trục của hình trụ. Bộ đề tham khảo này cung cấp cho học sinh những câu hỏi thực tế và phong phú để rèn luyện kiến thức Toán của mình, giúp họ chuẩn bị tốt cho kỳ tuyển sinh sắp tới.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GDKHCN Bạc Liêu
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GDKHCN Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 sở Bạc Liêu Đề tuyển sinh THPT môn Toán năm 2020-2021 sở Bạc Liêu Vào sáng thứ Ba, ngày 14 tháng 07 năm 2020, Sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh này dành cho thí sinh muốn thi vào các lớp không chuyên, bao gồm 01 trang đề với 04 bài toán tự luận. Thời gian làm bài thi là 120 phút. Để trích dẫn một số câu trong đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của sở Bạc Liêu: 1. Cho parabol (P) có phương trình y = 2x^2 và đường thẳng (d) có phương trình y = 3x + b. Chúng ta cần xác định giá trị của b như thế nào để đường thẳng (d) tiếp xúc với parabol (P). 2. Đề cho phương trình x^2 - (m - 1)x - m = 0 (1) (với m là tham số). Câu hỏi yêu cầu giải phương trình (1) khi m = 4 và chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. 3. Đề cũng đưa ra một câu hỏi về đường tròn có đường kính AB = 2R và các đoạn thẳng liên quan đến nó. Thí sinh cần chứng minh các tính chất của các tứ giác và tam giác, cũng như tìm giá trị nhỏ nhất của diện tích tam giác dựa trên R. Với nhiều câu hỏi và yêu cầu phức tạp, đề tuyển sinh THPT môn Toán năm 2020-2021 của sở Bạc Liêu thách thức và đòi hỏi sự tỉ mỉ, logic và kiến thức vững chắc từ thí sinh. Chúc các em thành công trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2)
Nội dung Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) Ngày 13 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020 – 2021. Kỳ thi này dành cho thí sinh muốn thi vào các lớp chuyên Toán. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) bao gồm 01 trang với 04 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2): 1. Tìm tất cả các số nguyên dương a, b, c sao cho cả ba số 4a^2 + 5b, 4b^2 + 5c, 4c^2 + 5a đều là bình phương của số nguyên dương. 2. Chứng minh rằng nếu từ một bộ bốn số thực (a, b, c, d) ta xây dựng bộ số mới (a + b, b + c, c + d, d + a) và liên tiếp xây dựng các bộ số mới theo quy tắc trên, nếu ở hai thời điểm khác nhau ta thu được cùng một bộ số (có thể khác thứ tự) thì bộ số ban đầu phải có dạng (a, -a, a, -a). 3. Cho tam giác ABC cân tại A với BAC < 90 độ. Chứng minh rằng bốn điểm A, E, P, F cùng thuộc một đường tròn và các điểm L, S, T, R được xác định như sau... Đề tuyển sinh môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) chứa những câu hỏi thú vị và đòi hỏi sự suy luận logic, khả năng phân tích và giải quyết vấn đề của thí sinh. Chúc các thí sinh thành công trong kỳ thi của mình!
Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM
Nội dung Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM Ngày 13 tháng 07 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh 10 môn Toán (chuyên) năm 2020 – 2021 trường PTNK – TP HCM bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian 120 phút cho học sinh làm bài. Dưới đây là một số câu hỏi trong đề tuyển sinh: 1. Cho các phương trình: \(x^2 + ax + 3 = 0\) và \(x^2 + bx + 5 = 0\) với a, b là tham số. a) Chứng minh nếu ab ≥ 16 thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung x₀. Tìm a, b sao cho |a| + |b| có giá trị nhỏ nhất. 2. Cho phương trình: \(3x^2 – y^2 = 23^n\) với n là số tự nhiên. a) Chứng minh nếu n chẵn thì phương trình đã cho không có nghiệm nguyên (x;y). b) Chứng minh nếu n lẻ thì phương trình đã cho có nghiệm nguyên (x;y). 3. Cho số tự nhiên \(a = 3^{13} \cdot 5^7 \cdot 7^{20}\). a) Gọi A là tập hợp các số nguyên dương k sao cho k là ước của a và k chia hết cho 105. Hỏi tập A có bao nhiêu phần tử? b) Giả sử B là một tập con bất kỳ của A có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của B sao cho tích của chúng là số chính phương.