Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 12 lần 2 năm 2019 - 2020 trường THPT Tiên Du 1 - Bắc Ninh

Ngày … tháng 12 năm 2019, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán 12 lần thứ 2 năm học 2019 – 2020. Đề thi KSCL Toán 12 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh mã đề 201 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, kỳ thi nhằm mục đích giúp học sinh rèn luyện thường xuyên để hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 2 năm 2019 – 2020 trường THPT Tiên Du 1 – Bắc Ninh : + Một ngôi biệt thự có 10 cây cột nhà hình trụ tròn, tất cả đều có chiều cao bằng 4,2m. Trong đó, 4 cây cột trước đại sảnh có đường kính bằng 40cm, 6 cây cột còn lại bên thân nhà có đường kính bằng 26cm. Chủ nhà dùng loại sơn giả đá để sơn 10 cây cột đó. Nếu giá của một loại sơn giả đá là 2.380.000 đồng/m2 (kể cả phần thi công) thì số tiền ít nhất người chủ phải chi để sơn 10 cây cột nhà đó gần nhất với giá trị nào? + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc và SB + SC = SA = 3a. Gọi Sc(I;R) là mặt cầu tâm I, bán kính R tiếp xúc với tất cả các mặt của hình chóp S.ABC và nằm ngoài hình chóp S.ABC đồng thời I và S nằm về 2 phía đối với mặt phẳng (ABC) (nói cách khác Sc(I;R) là mặt cầu bàng tiếp mặt đáy (ABC) của hình chóp S.ABC). Tính bán kính R theo a. [ads] + Một người vay ngân hàng 90.000.000 đồng theo hình thức trả góp trong 3 năm, mỗi tháng người đó phải trả số tiền gốc là như nhau và tiền lãi. Giả sử lãi suất không thay đổi trong toàn bộ quá trình trả nợ là 0.8% trên tháng. Tổng số tiền mà người đó phải trả cho ngân hàng trong toàn bộ quá trình trả nợ là? A. 103.220.000 đồng. B. 103.320.000 đồng. C. 103.120.000 đồng. D. 103.420.000 đồng. + Khai triển P(x) = (x + 2)^2020 theo công thức nhị thức Niu tơn rồi lấy ngẫu nhiên hai số hạng trong các số hạng khai triển được. Gọi P là xác suất để lấy được hai số đều không chứa x^k khi k là số tự nhiên lẻ. Làm tròn P theo qui tắc làm tròn số để được một số thập phân có dạng a,bcde. Tính T = a + b + c + d + e? + Trong các khẳng định sau khẳng định nào sai? A. Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại. B. Nếu một đường thẳng cắt một trong hai mặt phẳng song song thì nó cắt mặt phẳng còn lại. C. Nếu hai đường thẳng song song thì chúng cùng nằm trên một mặt phẳng. D. Nếu hai mặt phẳng phân biệt cùng song song với một mặt phẳng thì chúng song song với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 năm 2020 - 2021 trường THPT Thiệu Hóa - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa. Trích dẫn đề khảo sát Toán 12 năm 2020 – 2021 trường THPT Thiệu Hóa – Thanh Hóa : + Trong không gian Oxyz, cho mặt phẳng (P): x + y – z – 3 = 0 và hai điểm A(1;1;1) và B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc một đường tròn cố định, bán kính của đường tròn đó bằng? + Từ một tấm tôn có kích thước 90 cm x 300 cm, người ta làm một máng chứa nước thải trên mái nhà, mặt cắt ngang của máng là hình thang cân ABCD đáy lớn AD, AB = BC = CD = 30cm (minh hoạ hình bên). Thể tích lớn nhất của máng bằng? + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị của tham số m để hàm số h(x) = |f2(x) + f(x) + m| có đúng 3 điểm cực trị.
Đề khảo sát Toán 12 lần 3 năm 2020 - 2021 trường Lê Quý Đôn - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát Toán 12 lần 3 năm học 2020 – 2021 trường THPT Lê Quý Đôn – Quảng Ninh; kỳ thi nhằm giúp các em học sinh rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán. Trích dẫn đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường Lê Quý Đôn – Quảng Ninh : + Một nhóm có 10 học sinh gồm 6 nam (trong đó có Bình) và 4 nữ (trong đó có An) được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ khai giảng năm học. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Bình không ngồi cạnh An là? + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ, biết f(x) đạt cực tiểu tại điểm x = 1 và thỏa mãn [f(x) + 1] và [f(x) – 1] lần lượt chia hết cho (x – 1)2 và (x + 1)2. Gọi S1, S2 lần lượt là diện tích hình phẳng như trong hình bên dưới. Tính 2S1 – S2. + Người ta cần đổ một ống cống thoát nước hình trụ với chiều cao 2m, độ dày thành ống là 10cm. Đường kính ống là 50cm. Tính lượng bê tông cần dùng để làm ra ống thoát nước đó?
Đề khảo sát Toán 12 lần 3 năm 2020 - 2021 trường THPT Thành Nhân - TP HCM
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm 2021 do Bộ Giáo dục và Đào tạo tổ chức, thứ Năm ngày 09 tháng 06 năm 2021, trường THPT Thành Nhân, quận Tân Phú, thành phố Hồ Chí Minh tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ ba. Đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 3 năm 2020 – 2021 trường THPT Thành Nhân – TP HCM : + Trong không gian Oxyz cho điểm A(0;5;8) và hai mặt cầu 2 2 2 S x y z 25 0 2 2 2 S x y z y 16 23 0. Gọi M là điểm thuộc cả hai mặt cầu S S. Khoảng cách AM nhỏ nhất bằng? + Gọi S là tập hợp các số thực m sao cho với mỗi m S có đúng một số phức thỏa mãn z m 4 và 6 z z là số thuần ảo. Tính tổng của các phần tử của tập S. + Trong không gian Oxyz cho điểm B(0;9;0); M(1;5;4). Mặt phẳng P qua hai điểm B M P cắt chiều dương các trục Ox; Oz lần lượt tại A C. Thể tích tứ diện OABC nhỏ nhất bằng?
15 đề tham khảo ôn thi tốt nghiệp THPT 2021 môn Toán sở GDĐT Gia Lai
Tài liệu gồm 375 trang, tuyển tập 15 đề tham khảo ôn thi tốt nghiệp THPT 2021 môn Toán sở GD&ĐT Gia Lai, có đáp án và lời giải chi tiết. Trích dẫn 15 đề tham khảo ôn thi tốt nghiệp THPT 2021 môn Toán sở GD&ĐT Gia Lai: + Tính diện tích vòng cung: Lối đi hình vòng cung ở dưới là một phần của khối trụ tròn xoay. Gọi R là bán kính của khối trụ. Áp dụng định lý sin ta có: 0 8 2 4 2 sin135 R R. Vậy nên cung tròn chắn bởi dây cung AB có độ lớn 2. Vậy độ dài của cung AB là 4 2 2 2 2 AB l R. Diện tích vòng cung là: 1 25 50 2 AB S l. Tính diện tích của miền ABCDEF: 1 2 60 76 8 4 ABCDEF OAB S R S. Vậy diện tích xung quanh của bể cá là: 2 1 S S S xq ABCDEF 2 2.25.6 2.25 673,879 m. Vậy số tiền làm bể cá là: 673,879 500.000 336.939.500 đồng. + Phần màu nhạt là phần giao nhau của hai khối cầu. Gọi h là chiều cao của chỏm cầu. Ta có 2 2.25 40 5 2 2 R d h cm (d là khoảng cách giữa hai tâm). Diện tích xung quanh của chỏm cầu là: 2 xq S Rh. Vì 2 khối cầu bằng nhau nên 2 hình chỏm cầu bằng nhau: xq S khối trang sức 2 (xq S khối cầu xq S chỏm cầu). Khối trang sức có 2 2 2 2 2 4 2 2 4 25 2 25 5 4500 0 45 xq S R Rh cm m. Vậy số tiền dùng để mạ vàng khối trang sức đó là 0 45 470.00 66 0 0 4.0 0 đồng. + Ta có 1 1 z i iz i 3 5 2 2 6 10 4 1 2 2 iz i z i 1 2 4 3 6 3 12 2. Gọi A là điểm biểu diễn số phức 1 2iz, B là điểm biểu diễn số phức 2 3z. Từ 1 và 2 suy ra điểm A nằm trên đường tròn tâm I 1 6 10 và bán kính 1 R 4; điểm B nằm trên đường tròn tâm I 2 6 3 và bán kính 2 R.