Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT Quận 1 - TP HCM

Đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 25 tháng 11 năm 2020. Trích dẫn đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM : + Vào tháng 2 năm 2020, khi đang vào mùa thu hoạch, giá tôm hùm bất ngờ giảm mạnh do dịch bệnh COVID-19 không xuất khẩu được. Ông A cho biết phải bán 30% số tôm với giá 450 nghìn đồng mỗi kilôgam. Sau đó nhờ phong trào “giải cứu tôm hùm” nên đã bán được số tôm còn lại với giá 720 nghìn đồng mỗi kilôgam. Biết rằng mỗi kilôgam tôm thu hoạch được ông A đã đầu tư hết 500 nghìn đồng và nếu trừ đi số tiền đầu tư này thì ông lãi được 69,5 triệu đồng. a) Hỏi khối lượng tôm hùm ông A thu hoạch được là bao nhiêu kilôgam. b) Ông A cũng cho biết thêm rằng nếu không có dịch COVD-19 thì thương lái sẽ mua hết số tôm hùm với giá 1,2 triệu đồng mỗi kilôgam. Hỏi ông A thu được lợi nhuận bao nhiêu khi bán hết số tôm hùm nói trên nếu không có dịch COVID-19? + Cho đường tròn (O) đường kính AB. Trên đường tròn (O) lấy điểm C sao cho AC > BC. Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại D. Gọi I là trung điểm của AD. a) Chứng minh: AC vuông góc với BD và IC là tiếp tuyến của đường tròn (O). b) Gọi M và N lần lượt là hình chiếu của C trên AB và AD. Chứng minh: √MB.MC + √NC.ND = √AB.AD. c) BI cắt đường tròn (O) tại K. Chứng minh: BKC = IKD.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 - 2024 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Yên; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Phú Yên : + Cho hình vuông ABCD, I là trung điểm của cạnh AB. Dựng đường tròn tâm I đường kính AB. Tiếp tuyến DE với đường tròn (I) cắt cạnh BC tại F (E là tiếp điểm). a) Biết EF = 6,25 cm, tính cạnh của hình vuông. b) Trên nửa đường tròn đường kính AB (phần không cùng phía với hình vuông ABCD) lấy các điểm M, N sao cho BM = MN = 15 cm (M nằm giữa B và N). Tính chu vi tứ giác BMNA. + Cho tam giác ABC vuông tại A. D là điểm di động trên cạnh AC. Đường thẳng qua A và vuông góc với BD cắt đường thẳng qua C và vuông góc với AC tại E. Chứng minh rằng đường tròn đường kính DE đi qua điểm cố định thứ hai (khác điểm C).
Đề học sinh giỏi tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Nghệ An : + Cho đường tròn (O;R) cố định và điểm A cố định nằm ngoài đường tròn (O;R). Từ điểm A vẽ hai tiếp tuyến AB, AC tới đường tròn (O;R) (B, C là các tiếp điểm). Qua A vẽ đường thẳng cố định cắt đường tròn (O;R) tại hai điểm phân biệt I và E (I nằm giữa hai điểm A, E và EBC < 90°). Gọi H là giao điểm của AO và BC. Qua H vẽ đường thẳng (d) song song với BE, biết (d) cắt các đường thẳng BI, BA lần lượt tại Q và N. a) Chứng minh rằng BI/BE = CI/CE. b) Chứng minh rằng Q là trung điểm của NH. c) Vẽ đường tròn (P;R1) thay đổi nhưng luôn đi qua hai điểm I và E. Từ A vẽ hai tiếp tuyến AD, AJ với đường tròn (P;R1) (D, J là các tiếp điểm). Chứng minh đường thẳng DJ luôn đi qua một điểm cố định. + Trong phòng có 121 người, biết mỗi người quen với ít nhất 81 người khác. Chứng minh rằng trong phòng phải có 4 người từng đôi một quen nhau.
Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 - 2024 sở GDĐT Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào ngày 03 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán THCS cấp tỉnh năm 2023 – 2024 sở GD&ĐT Sơn La : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(1;3), parabol (P) và đường thẳng (d) có phương trình lần lượt là: y = x2 và y = ax + 3 – a. a) Chứng minh rằng với mọi giá trị của a đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Giả sử B và C là hai giao điểm của (d) và (P). Tìm a để AB = 2AC. + Cho đường tròn (O;R) và dây cung BC = R3 cố định. Điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi E là điểm đối xứng với B qua AC và F là điểm đối xứng với C qua AB. Các đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại K (K không trùng với A). Gọi H là giao điểm của BE và CF. a) Chứng minh KA là đường phân giác trong của góc BKC. b) Chứng minh tứ giác BHCK nội tiếp. c) Xác định vị trí điểm A để diện tích tứ giác BHCK lớn nhất, tính điện tích lớn nhất của tứ giác đó theo R. d) Chứng minh đường thẳng AK luôn đi qua một điểm cố định.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy, cho điểm M(3; 5). Lập phương trình đường thẳng d đi qua M và cắt các tia Ox, Oy tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 30 (đvdt). + Cho tam giác nhọn ABC có H, G lần lượt là trực tâm, trọng tâm và HG song song với BC. Tính tan B·tan C. + Cho nửa đường tròn tâm O đường kính AB. Lấy điểm H cố định thuộc đoạn thẳng OA (H không trùng với O và A). Đường thẳng vuông góc với AB tại H cắt nửa đường tròn tâm O tại C. Gọi D là điểm đối xứng với A qua C; I, J lần lượt là trung điểm của CH và DH. a) Chứng minh hai tam giác CHJ và HBI đồng dạng. b) Gọi Bx là tia tiếp tuyến của nửa đường tròn tâm O. Lấy điểm E di động trên Bx (E không trùng với B). Đường thẳng qua H vuông góc với AE cắt đường thẳng BE tại F. Chứng minh đường tròn đường kính EF luôn đi qua hai điểm cố định khi E di động trên tia Bx.