Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu chuyên đề khối đa diện và thể tích khối đa diện

Tài liệu gồm 443 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . KHỐI ĐA DIỆN. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. BÀI 2 . KHỐI ĐA DIỆN LỒI – KHỐI ĐA DIỆN ĐỀU. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. III BÀI TẬP TRẮC NGHIỆM TỔNG HỢP. BÀI 3 . THỂ TÍCH KHỐI ĐA DIỆN. I LÝ THUYẾT. II HỆ THỐNG BÀI TẬP TỰ LUẬN. Dạng 1. Thể tích khối chóp có cạnh bên vuông góc với đáy. + Loại 1. Tính bằng công thức. + Loại 2. Tính thể tích khối chóp có cạnh bên vuông góc với đáy khi biết góc giữa đường thẳng và mặt phẳng. + Loại 3. Tính thể tích khối chóp có cạnh bên vuông góc đáy khi biết góc giữa hai mặt phẳng. + Loại 4. Tính thể tích khối chóp có cạnh bên vuông góc với đáy khi biết khoảng cách từ một điểm đến một mặt phẳng. Dạng 2. Thể tích khối chóp có hình chiếu của đỉnh là các điểm đặc biệt trên mặt đáy (không trùng với các đỉnh của đa giác đáy). + Trường hợp 1. Hình chiếu của đỉnh trên mặt đáy nằm trên cạnh của đa giác đáy (một mặt bên của hình chóp vuông góc với mặt đáy). + Trường hợp 2. Hình chiếu của đỉnh trên mặt đáy nằm ở miền trong của đa giác đáy. + Trường hợp 3. Hình chiếu của đỉnh trên mặt đáy nằm ở miền ngoài của đa giác đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Thể tích khối lăng trụ đứng – đều. Dạng 5. Thể tích khối lăng trụ xiên. + Loại 1. Tính thể tích lăng trụ xiên bằng cách xác định chiều cao và diện tích đáy. + Loại 2. Tính thể tích lăng trụ xiên khi biết các yếu tố góc, khoảng cách. + Loại 3. Tính thể tích lăng trụ (tam giác) gián tiếp qua thể tích khối chóp. Dạng 6. Thể tích các khối đa diện khác. Dạng 7. Các bài toán ứng dụng thể tích tính diện tích, khoảng cách. + Dạng 7.1. Ứng dụng thể tích tính khoảng cách từ điểm đến mặt phẳng. + Dạng 7.2. Ứng dụng thể tích tính khoảng cách giữa hai đường thẳng chéo nhau. Dạng 8. Các bài toán về tỉ số thể tích. + Dạng 8.1. Thể tích khối chóp. + Dạng 8.2. Thể tích khối lăng trụ. III HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Các dạng bài tập trắc nghiệm. THỂ TÍCH KHỐI CHÓP. Dạng 1. Cạnh bên vuông góc với đáy. Dạng 2. Mặt bên vuông góc với đáy. Dạng 3. Thể tích khối chóp đều. Dạng 4. Cạnh bên vuông góc với đáy. Dạng 5. Mặt bên vuông góc với đáy. Dạng 6. Thể tích khối chóp đều. Dạng 7. Thể tích khối chóp khác. THỂ TÍCH KHỐI LĂNG TRỤ. Dạng 1. Thể tích khối lăng trụ đứng. Dạng 2. Thể tích khối lăng trụ xiên. TỈ SỐ THỂ TÍCH. Dạng 1. Tỉ số thể tích khối chóp tam giác. Dạng 2. Tỉ số khối lăng trụ.

Nguồn: toanmath.com

Đọc Sách

Toàn tập thể tích khối đa diện vận dụng cao
Tài liệu gồm 92 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện vận dụng cao (VDC) lớp 12 THPT. Vận dụng cao thể tích khối đa diện đặc biệt – (phần 1). Vận dụng cao thể tích khối đa diện đặc biệt – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 1). Vận dụng cao bài toán thể tích khối đa diện – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 1). Vận dụng cao cực trị thể tích khối đa diện – (phần 2). Vận dụng cao cực trị thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 4). Vận dụng cao cực trị thể tích khối đa diện – (phần 5). Vận dụng cao cực trị thể tích khối đa diện – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 1). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 2). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 3). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 4). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 5). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 7). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 8). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 9). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 10). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 4). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 5). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 4). Vận dụng cao tỉ số thể tích khối hộp – (phần 1). Vận dụng cao tỉ số thể tích khối hộp – (phần 2). Vận dụng cao tỉ số thể tích khối hộp – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 1). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 2). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 4). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 1). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 2). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 3). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 4). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 6). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 7). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 8). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 9). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 10). Xem thêm : Toàn tập thể tích khối đa diện cơ bản
Chuyên đề hình học không gian Toán 12 - Lê Quang Xe
Tài liệu gồm 411 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tóm tắt lý thuyết, ví dụ minh họa và bài tập rèn luyện chuyên đề hình học không gian trong chương trình môn Toán 12. CHƯƠNG 1 . ĐA DIỆN 1. §1 – THỂ TÍCH KHỐI ĐA DIỆN 1. A Tóm tắt lý thuyết 1. B Ví dụ minh họa 4. C Bài tập rèn luyện 12. + Dạng 1.Mở đầu khối đa diện 12. + Dạng 2.Thể tích khối lăng trụ đứng 22. + Dạng 3.Thể tích khối chóp có cạnh bên vuông góc với đáy 55. + Dạng 4.Thể tích khối chóp có mặt bên vuông góc với đáy 89. + Dạng 5.Thể tích khối chóp đều 121. + Dạng 6.Thể tích khối tứ diện đặc biệt 151. + Dạng 7.Tỉ số thể tích 197. + Dạng 8.Các bài toán thể tích chọn lọc 244. + Dạng 9.Bài toán góc – khoảng cách 284. + Dạng 10.Cực trị khối đa diện 325. CHƯƠNG 2 . KHỐI TRÒN XOAY 344. §1 – MẶT NÓN, MẶT TRỤ & MẶT CẦU 344. A Tóm tắt lý thuyết 344. B Ví dụ 346. C Bài tập rèn luyện 348. + Dạng 1.Các yếu tố liên quan đến khối nón, Khối trụ 348. + Dạng 2.Khối tròn xoay nội, ngoại tiếp đa diện 370. + Dạng 3.Cực trị và toán thực tế về khối tròn xoay 381.
Toàn tập thể tích khối đa diện cơ bản
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện cơ bản lớp 12 THPT. Cơ bản thể tích khối chóp (phần 1). Cơ bản thể tích khối chóp (phần 2). Cơ bản thể tích khối chóp (phần 3). Cơ bản thể tích khối chóp (phần 4). Cơ bản thể tích khối chóp (phần 5). Cơ bản thể tích khối chóp (phần 6). Cơ bản thể tích khối chóp (phần 7). Cơ bản thể tích khối chóp (phần 8). Cơ bản thể tích khối chóp (phần 9). Cơ bản thể tích khối lăng trụ (phần 1). Cơ bản thể tích khối lăng trụ (phần 2). Cơ bản thể tích khối lăng trụ (phần 3). Cơ bản thể tích khối lăng trụ (phần 4). Cơ bản thể tích khối lăng trụ (phần 5). Cơ bản thể tích khối lăng trụ (phần 6). Cơ bản thể tích khối lăng trụ (phần 7). Cơ bản thể tích khối lăng trụ (phần 8).
Một số bài toán cực trị hình học trong không gian
Tài liệu gồm 53 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn một số bài toán cực trị hình học trong không gian có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Hình học chương 1: Khối đa diện và thể tích của chúng. Trích dẫn tài liệu một số bài toán cực trị hình học trong không gian: +  Một khối gỗ hình hộp chữ nhật có kích thước thoả mãn: Tổng của chiều dài và chiều rộng bằng 12 cm; tổng của chiều rộng và chiều cao là 24 cm. Hỏi thể tích lớn nhất mà khối hộp có thể đạt được là bao nhiêu? + Trong không gian cho bốn mặt cầu có bán kính lần lượt là 2; 3; 3; 2 đôi một tiếp xúc nhau. Mặt cầu nhỏ tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng? + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 0 45 góc giữa SB và mặt đáy bằng 0 0 90. Xác định để thể tích khối chóp S ABC đạt giá trị lớn nhất. + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 45o góc giữa SB và mặt đáy bằng 0 90 o o. Xác định để thể tích khối chóp S ABC lớn nhất. + Cho hình chóp S ABCD có đáy ABCD là hình thang cân đáy AB nội tiếp đường tròn tâm O bán kính R. Biết rằng AC BD tại I đồng thời I là hình chiếu của S lên ABCD và SAC vuông tại S. Thể tích lớn nhất của khối chóp S ABCD theo R là?