Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Kim Thành Hải Dương

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 phòng GD ĐT Kim Thành Hải Dương Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 phòng GD ĐT Kim Thành Hải Dương Chào các thầy, cô giáo và các em học sinh lớp 7. Sytu xin giới thiệu đến các bạn đề học sinh giỏi huyện Toán lớp 7 năm 2016-2017 từ phòng GD&ĐT Kim Thành - Hải Dương. Đề thi này bao gồm các câu hỏi có đáp án và lời giải chi tiết. Trích dẫn từ đề học sinh giỏi huyện Toán lớp 7 năm 2016-2017 phòng GD&ĐT Kim Thành - Hải Dương: + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 - 2n+2 + 3n - 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3. Đề thi được thiết kế để giúp các em học sinh rèn luyện kỹ năng và kiến thức Toán một cách chi tiết và sâu sắc. Hy vọng rằng đề thi sẽ giúp các em tự tin hơn khi đối diện với các bài tập thách thức. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và AMC = 135 độ. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
Đề khảo sát HSG Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Kon Tum
Đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum có đáp án + lời giải chi tiết + hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2017. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum : + Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. Chứng minh rằng: a) BE = CD. b) BDE là tam giác cân. c) EIC 60 và IA là tia phân giác của DIE. + Tìm số hữu tỉ x, sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. + Cho các số a, b, c không âm thỏa mãn: a + 3c = 2016; a + 2b = 2017. Tìm giá trị lớn nhất của biểu thức P = a + b + c.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh: ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của đoạn thẳng DK. + Cho tam giác ABC (AB < AC, B = 60). Hai tia phân giác AD (D BC) và CE (E AB) của ABC cắt nhau ở I. Chứng minh IDE cân. + Cho hai đa thức: f(x) và g(x). Xác định hệ số a;bcủa đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đề khảo sát HSG Toán 7 năm 2017 - 2018 trường THCS Vũ Phạm Khải - Ninh Bình
Đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2018. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ số học sinh là 7:6:5. Nhưng sau đó vì có học sinh thuyển chuyển giữa 3 lớp nên phải chia lại theo tỉ lệ 6:5:4. Như vậy có lớp đã nhận được ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được. + Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau: f(0) ≠0; f(1)=3; f(x)f(y)=f(x+y)+f(x-y) với mọi x, y. Tính giá trị của f(7). + Ba phân số có tổng bằng 213 70, các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.