Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hưng Yên

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Trong mặt phẳng toạ độ Oxy, cho điểm M(3; 5). Lập phương trình đường thẳng d đi qua M và cắt các tia Ox, Oy tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 30 (đvdt). + Cho tam giác nhọn ABC có H, G lần lượt là trực tâm, trọng tâm và HG song song với BC. Tính tan B·tan C. + Cho nửa đường tròn tâm O đường kính AB. Lấy điểm H cố định thuộc đoạn thẳng OA (H không trùng với O và A). Đường thẳng vuông góc với AB tại H cắt nửa đường tròn tâm O tại C. Gọi D là điểm đối xứng với A qua C; I, J lần lượt là trung điểm của CH và DH. a) Chứng minh hai tam giác CHJ và HBI đồng dạng. b) Gọi Bx là tia tiếp tuyến của nửa đường tròn tâm O. Lấy điểm E di động trên Bx (E không trùng với B). Đường thẳng qua H vuông góc với AE cắt đường thẳng BE tại F. Chứng minh đường tròn đường kính EF luôn đi qua hai điểm cố định khi E di động trên tia Bx.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Gio Linh - Quảng Trị
Đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 23 tháng 10 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị : + Tìm số tự nhiên n sao cho n2 + 2n + 30 là số chính phương. + Cho tứ giác ABCD. Qua B, vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt DC tại E. Chứng minh rằng: Diện tích tam giác ADE bằng diện tích tứ giác ABCD. + Cho tam giác ABC có AB < AC, phân giác AD. Gọi E là trung điểm của BC. Qua E, vẽ đường thẳng song song với DA, đường thẳng này cắt các đường thẳng AB, AC lần lượt tại G và F. Chứng minh rằng: BG = FC.
Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Tân Kỳ - Nghệ An
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 10 năm 2021. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An : + a) Chứng minh rằng với mọi số tự nhiên n thì n3 + 11n chia hết cho 6. b) Giải phương trình c) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 – y2 = 4x + 3. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường thẳng vuông góc với BC tại B cắt AC tại D. a) Chứng minh rằng: AH2 = HB.HC và BH.BC = AD.AC. b) Chứng minh c) Cho góc nhọn a và sin a = 2/3. Tính P. + Cho 7 điểm phân biệt nằm bên trong hình vuông ABCD có cạnh bằng 10. Chứng minh rằng có ít nhất một điểm trong hình vuông đã cho (có thể nằm trên cạnh của hình vuông) sao cho khoảng cách từ nó đến 7 điểm đã cho đều lớn hơn 2,5.
Đề thi HSG Toán 9 cấp thị xã năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
Đề thi HSG Toán 9 cấp thị xã năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG Toán 9 cấp thành phố năm 2021 - 2022 phòng GDĐT TP Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG Toán 9 cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Thanh Hóa; đề thi được biên soạn theo hình thức 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 09 năm 2021.