Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lần 1 Toán 10 năm 2023 - 2024 trường THPT Nông Cống 3 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 701 – 702 – 703 – 704. Trích dẫn Đề thi KSCL lần 1 Toán 10 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Một phân xưởng có hai máy đặc chủng A, B sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại 2 lãi 1,6 triệu dồng. Muốn sản xuất 1 tấn sản phẩm loại I dùng máy A trong 3 giờ và máy B trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II dùng máy A trong 1 giờ và máy B trong 1 giờ. Một máy không thể dùng để sản suất đồng thời 2 loại sản phẩm. Máy A làm việc không quá 6 giờ trong một ngày, máy B một ngày chỉ làm việc không quá 4 giờ. Số tiền lãi cao nhất một ngày là? + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB 40 m CAB CBA 45 70. Vậy sau khi đo đạc và tính toán khoảng cách AC gần nhất với giá trị nào sau đây? + Cho tập hợp A = {đỏ; cam; tím; hồng; lam), B = {lục; hồng, chàm; tím}. Kết quả của phép toán A B là?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 - 2017 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 – 2017 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 3 bài tập tự luận, có hướng dẫn giải và thang điểm.
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên - Bắc Ninh lần 2
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên – Bắc Ninh lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 - Bắc Ninh
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 – Bắc Ninh gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg hóa chất A và 9kg hóa chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg hóa chất A và 0,6kg hóa chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10kg hóa chất A và 1,5kg hóa chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II? + Tìm độ dài hai cạnh của một tam giác vuông biết rằng: Khi ta tăng mỗi cạnh 1 cm thì diện tích tăng 5,5 cm2; khi ta giảm chiều dài cạnh này 3 cm và cạnh kia 2 cm thì diện tích giảm 9 cm2. Đáp án đúng là? + Tìm khẳng định SAI trong các khẳng định sau: A. Phương sai luôn luôn lớn hơn độ lệch chuẩn B. Phương sai càng lớn thì độ phân tán của các giá trị quanh số trung bình càng lớn C. Phương sai luôn luôn là 1 số dương D. Phương sai là bình phương của độ lệch chuẩn
Đề khảo sát chất lượng môn Toán lớp 10 trường THPT chuyên Vĩnh Phúc lần 4
Đề khảo sát chất lượng môn Toán lớp 10 trường THPT chuyên Vĩnh Phúc lần 4 gồm 40 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Để chào mừng ngày 26/3, đoàn trường THPT Chuyên phát động cuộc thi hoa điểm tốt với quy định như sau: Với mỗi điểm 10, 9, 8 tương ứng sẽ được thưởng xyz , , bông hoa. Tuần thứ nhất, lớp 10A được 7 điểm 10 và 5 điểm 8 nên được thưởng 88 bông hoa. Tuần thứ hai, lớp 10A được 1 điểm 10, 10 điểm 9 và 15 điểm 8 nên được thưởng 154 bông hoa. Tuần thứ ba, lớp 10A được 15 điểm 10, 1 điểm 9, 2 điểm 8 nên được thưởng 152 bông hoa. Hỏi nếu lớp 10A được 5 điểm 10, 10 điểm 9 và 7 điểm 8 thì lớp đó được thưởng bao nhiêu bông hoa? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(4;-1), phương trình đường cao AH: 2x – 3y + 12 = 0, phương trình đường trung tuyến AM: 2x + 3y = 0. Viết phương trình đường thẳng chứa cạnh AC. + Thống kê điểm thi môn toán trong một kì thi của 400 em học sinh người ta thấy có 72 bài được điểm 5. Hỏi tần suất của giá trị xi = 5 là bao nhiêu?