Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Nghệ An

Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Nghệ An Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Nghệ An Chào mừng quý thầy cô và các em học sinh đến với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 tại sở Giáo dục và Đào tạo tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 06 tháng 06 năm 2023. Dưới đây là một số câu hỏi trong đề thi tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Nghệ An: 1. Một cửa hàng kinh doanh xe đạp đã nhập về một lô hàng gồm hai loại xe, loại I giá 2 triệu đồng/xe và loại II giá 6 triệu đồng/xe. Tổng số tiền mà cửa hàng phải thanh toán cho lô hàng 50 xe là 160 triệu đồng. Hỏi cửa hàng đã nhập về bao nhiêu xe loại I và bao nhiêu xe loại II? 2. Bạn An bỏ một viên bi đặc không thấm nước vào một lọ thủy tinh chứa nước dạng hình trụ có bán kính đáy bằng 1,5 cm. Khi viên bi chìm hoàn toàn trong nước, nước trong lọ dâng lên thêm 0,5 cm. Hãy tính thể tích viên bi bạn An đã bỏ vào lọ thủy tinh. 3. Cho tam giác nhọn ABC (AB < AC), các đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. a) Chứng minh AEHF là tứ giác nội tiếp. b) Gọi O là trung điểm của đoạn thẳng BC, M là giao điểm của tia EF và tia CB. Chứng minh rằng FAD = OFC và OC2 = OD.OM. c) Chứng minh rằng hai đường thẳng MH và AO vuông góc với nhau. Chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Yên Bái : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2x – m – 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x12 + 1 = 2×2. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE, CF (D thuộc BC, E thuộc CA, F thuộc AB). Tiếp tuyến tại A của đường tròn (O) cắt DF tại M, MC cắt (O) tại I khác C, IB cắt MD tại N. a) Chứng minh rằng MA // EF. b) Chứng minh rằng MAF cân, tứ giác AINF nội tiếp. c) Chứng minh rằng MA2 = MN.MD. d) Gọi K là giao điểm của CF và đường tròn (O). Chứng minh rằng A, N, K thẳng hàng. + Cho một đa giác đều có 23 đỉnh. Tô màu các đỉnh của đa giác bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng luôn tồn tại ba đỉnh của đa giác được tô cùng màu và tạo thành một tam giác cân.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào Chủ Nhật ngày 04 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất sao cho tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo không lớn hơn 6. + Lúc 7 giờ 30 phút hai xe ô tô cùng xuất phát từ A đến B với vận tốc của mỗi xe không thay đổi trên cả quãng đường. Xe thứ hai đến B sớm hơn xe thứ nhất đúng 1 giờ. Lúc quay trở về, xe thứ nhất tăng vận tốc thêm 5km/h, xe thứ hai vẫn giữ nguyên vận tốc như lúc đi nhưng dừng ở trạm nghỉ 36 phút, do đó xe thứ hai về đến A cùng lúc với xe thứ nhất. Biết rằng quãng đường từ A đến B là 180 km. Hỏi lúc đi, xe thứ nhất đến B lúc mấy giờ? + Số nguyên dương m được gọi là số tốt nếu tổng các bình phương của tất cả các ước dương của nó (không tính 1 và m) bằng 6m + 8. Chứng minh rằng nếu có hai số nguyên tố p, q phân biệt và thỏa mãn pq là số tốt thì pq + 2 là số chính phương.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho phương trình bậc hai x2 – 2mx + 2m – 3 = 0 (m là tham số). a. Giải phương trình khi m = 0,5. b. Tìm m để phương trình có hai nghiệm trái dấu. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) tâm O đường kính BC, đường thẳng qua O vuông góc với BC cắt AC tại D. a. Chứng minh rằng tứ giác ABOD nội tiếp. b. Tiếp tuyến tại điểm A với đường tròn (O) cắt đường thẳng BC tại điểm P, cho PB = BO = 2cm. Tính độ dài đoạn PA và số đo góc APC. + Cây bạch đàn mỗi năm cao thêm 1m, cây phượng mỗi năm cao thêm 50cm. Lúc mới vào trường học, cây bạch đàn cao 1m và cây phượng cao 3m. Giả sử rằng tốc độ tăng trưởng chiều cao của hai loại cây không đổi qua các năm. a. Viết hàm số biểu diễn chiều cao mỗi loại cây theo số năm tính từ lúc mới vào trường. b. Sau bao nhiêu năm so với lúc mới vào trường thì cây bạch đàn sẽ cao hơn cây phượng?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Gọi E là điểm đối xứng của B qua AC và F điểm đối xứng của C qua AB. Đường thẳng BE cắt đường thẳng CF tại H. a) Chứng minh các tứ giác AHBF và AHCE là tứ giác nội tiếp. b) Đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại điểm thứ hai là D. Chứng minh F, B, D thẳng hàng và DA là tia phân giác của góc EDF. c) Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp các tam giác ABE, ACF. Chứng minh sáu điểm B, C, D, O, P, Q cùng thuộc một đường tròn tâm I và giao điểm (khác D) của đường thẳng AD với đường tròn (I) là trực tâm tam giác APQ. d) Giả sử H thuộc đường tròn (I). Chứng minh các đường thẳng AI, DH, BC, PQ đồng quy. + Cho p là một số nguyên tố. a) Chứng minh nếu p lẻ và tồn tại số nguyên x sao cho (x + 1) chia hết cho p thì (p – 1) chia hết cho 4. Chứng minh 2023p + 23^p – 24 không là số chính phương. + Người ta tô màu mỗi điểm trên mặt phẳng bởi một trong hai màu đỏ hoặc xanh. Chứng minh: a) Tồn tại một tam giác vuông cân có ba đỉnh được tô cùng màu. b) Tồn tại một tam giác vuông có cạnh huyền bằng 2, một cạnh góc vuông bằng 1 và ba đỉnh được tô cùng màu.