Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI lớp 10 môn Toán năm học 2018 2019 trường THPT Hoa Lư A Ninh Bình

Nội dung Đề thi HKI lớp 10 môn Toán năm học 2018 2019 trường THPT Hoa Lư A Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô và các em nội dung đề thi HKI Toán lớp 10 năm học 2018 – 2019 trường THPT Hoa Lư A – Ninh Bình, đề có mã đề 001 được biên soạn theo hình thức kết hợp giữa trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 8-2, phần trắc nghiệm gồm 20 câu và phần tự luận gồm 2 câu, học sinh làm bài thi trong 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán lớp 10 năm học 2018 – 2019 trường THPT Hoa Lư A – Ninh Bình : + Để sản xuất một thiết bị điện loại A cần 3 kg đồng và 2 kg chì, để sản xuất một thiết bị điện loại B cần 2 kg đồng và 1 kg chì. Sau khi sản xuất đã sử dụng hết 130 kg đồng và 80 kg chì. Giá bán của một sản phẩm loại A và loại B lần lượt là 5 triệu đồng và 3 triệu đồng. Số tiền thu về khi bán hết sản phẩm là? + Cho ABC đều có độ dài cạnh bằng 2a. Gọi d là đường thẳng qua A và song song BC, điểm M di động trên d. Tìm giá trị nhỏ nhất của |MA + 2MB – MC|. [ads] + Trong mặt phẳng Oxy, cho tam giác ABC biết A(4;-1), B(1;3), C(5;0). a) Chứng minh tam giác ABC là tam giác cân. b) Tìm tọa độ điểm M thuộc trục tung sao cho tam giác ABM vuông tại M. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra định kỳ Toán 10 lần 1 năm 2018 - 2019 sở GD và ĐT Bắc Ninh
Đề kiểm tra định kỳ Toán 10 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề), đề nhằm đánh giá tổng quát lại các nội dung kiến thức Toán 10 mà học sinh đã học trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra định kỳ Toán 10 lần 1 năm 2018 – 2019 sở GD và ĐT Bắc Ninh : + Giả sử phương trình 2x^2 – 4mx – 1 = 0 (với m là tham số) có hai nghiệm x1, x2. Tính T = x1^2 + x2^2 + x1 + x2 theo m. + Cho tam giác ABC. Gọi D là điểm trên cạnh BC sao cho DB = 2DC, I là trung điểm của AD, điểm M trên cạnh AC sao cho MA = xMC. Tìm x để 3 điểm M, B, I thẳng hàng. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0;-1), B(2;3), G(1;2). a. Tìm tọa độ AB và trung điểm I của BG. b. Tìm tọa độ điểm C sao cho tam giác ABC nhận G làm trọng tâm. c. Tìm tọa độ điểm N thỏa mãn AN = 2NB.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường Phước Vĩnh - Bình Dương
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường Phước Vĩnh – Bình Dương mã đề 392 gồm 25 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, học sinh làm bài trong 90 phút, đề nhằm giúp giáo viên bộ môn và nhà trường đánh giá toàn diện lại các kiến thức Toán 10 mà học sinh đã được học trong thời gian qua. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường Phước Vĩnh – Bình Dương : + Trong hệ trục tọa độ Oxy, cho tam giác ABC với A(-2;1), B(4;1), C(-2;5). a/ Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. b/ Chứng minh AB vuông góc AC. Tính diện tích tam giác ABC. [ads] + Câu nào sau đây không là mệnh đề? A. Tam giác đều là tam giác có ba cạnh bằng nhau. B. 3 < 1. C. Bạn học giỏi quá!. D. 4 – 5 = 1. + Trong hệ trục tọa độ Oxy. Cho tam giác ABC có A(3;5), B(1;2), C(5;2). Trọng tâm của tam giác ABC là?
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường chuyên Ngoại Ngữ - Hà Nội
giới thiệu đến quý thầy, cô và các em học sinh lớp 10 đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội, đề thi được biên soạn hoàn toàn theo hình thức tự luận, gồm 1 trang với 7 bài toán, học sinh có 90 phút để làm bài, kỳ thi được diễn ra ngày 14/12/2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm học 2018 – 2019 trường THPT chuyên Ngoại Ngữ – Hà Nội : + Cho parabol (P): y = x^2 – (m + 1)x + 2m (m là tham số) và đường thẳng d: y = 2x – 2. Tìm tất cả các giá trị của tham số m để đường thẳng d cắt (P) tại hai điểm phân biệt A, B sao cho độ dài đoạn AB bằng 2√5. + Cho tam giác ABC có các cạnh và góc thỏa mãn 2b.cosC + 3c.cos B = a. Chứng minh rằng: 3/ha^2 + 1/hc^2 = 1/hb^2. + Tìm m để phương trình x^3 + mx^2 – 3mx – 27 = 0 có ba nghiệm phân biệt x1, x2, x3 thỏa mãn 1/x1 + 1/x2 + 1/x3 = 10/9.
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Phan Đình Phùng - Hà Nội
Đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội mã đề 864 gồm 3 trang với 15 câu hỏi trắc nghiệm khách quan (chiếm 3 điểm) và 4 bài toán tự luận (chiếm 7 điểm), thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Phan Đình Phùng – Hà Nội : + Trong các mệnh đề sau, mệnh đề nào đúng? A. Với mọi số nguyên n, nếu n là số lẻ thì n^2 +1 cũng là số lẻ. B. Với mọi số nguyên n, nếu n là số lẻ thì n^2 cũng là số lẻ. C. Với mọi số nguyên n, nếu n là số lẻ thì 3n – 1 cũng là số lẻ. D. Với mọi số nguyên n, nếu n là số lẻ thì 3n + 1 cũng là số lẻ. [ads] + Cho hàm số y = f(x) có tập xác định là [-3;3] và có đồ thị được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng? A. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-3;-1) và (1;3). B. Hàm số y = f(x) + 2018 đồng biến trên các khoảng (-2;1) và (1;3). C. Hàm số y = f(x) + 2018 nghịch biến trên các khoảng (-2;-1) và (0;1). D. Hàm số y = f(x) + 2018 nghịch biến trên khoảng (-3;-2). + Trong mặt phẳng với hệ trục tọa độ Oxy, cho ba điểm A(2;3), B(3;4) và C(3;-1). a/ Chứng minh A, B, C là 3 đỉnh của 1 tam giác. b/ Xác định tọa độ trực tâm H của tam giác ABC. c/ Tìm tọa độ điểm M trên đường phân giác của góc phần tư thứ nhất sao cho biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất.