Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề ôn thi THPT Quốc gia môn Toán Lư Sĩ Pháp (Tập 1)
Nội dung Chuyên đề ôn thi THPT Quốc gia môn Toán Lư Sĩ Pháp (Tập 1) Bản PDF - Nội dung bài viết Chuyên đề ôn thi THPT Quốc gia môn Toán Lư Sĩ Pháp (Tập 1) Chuyên đề ôn thi THPT Quốc gia môn Toán Lư Sĩ Pháp (Tập 1) Để giúp các em học sinh lớp 12 có tài liệu tự học môn Toán hiệu quả, tôi đã biên soạn tập tài liệu ôn thi THPT Quốc gia. Cuốn tài liệu này được xây dựng dựa trên chương trình chuẩn và chương trình nâng cao của Bộ Giáo dục và Đào tạo. Nội dung của tập 1 tập trung vào các chuyên đề cụ thể như sau: - Chuyên đề 1: Ứng dụng của đạo hàm - Chuyên đề 2: Lũy thừa, Mũ, Logarit - Chuyên đề 3: Hình học không gian tổng hợp Mỗi chuyên đề trong tài liệu bao gồm 3 phần chính: phần lý thuyết cần nắm, bài tập trắc nghiệm và đáp án cho từng bài tập. Điều này giúp học sinh nắm vững kiến thức cũng như ôn tập và kiểm tra kiến thức một cách hiệu quả.
Kỹ thuật và sai lầm khi sử dụng máy tính bỏ túi trong giải toán Đoàn Văn Bộ, Huỳnh Anh Kiệt
Nội dung Kỹ thuật và sai lầm khi sử dụng máy tính bỏ túi trong giải toán Đoàn Văn Bộ, Huỳnh Anh Kiệt Bản PDF - Nội dung bài viết Máy tính bỏ túi – Kĩ thuật và sai lầm khi sử dụng trong giải toán Máy tính bỏ túi – Kĩ thuật và sai lầm khi sử dụng trong giải toán Quyển sách "Máy tính bỏ túi – Kĩ thuật và sai lầm" là tài liệu giới thiệu về các dạng toán thường gặp trong chương trình lớp 12, nhằm giúp học sinh nắm vững các kĩ thuật cơ bản khi sử dụng máy tính trong các bài tập và bài thi, đặc biệt là bài thi Trung học Phổ thông Quốc gia. Cuốn sách này bao gồm các chuyên đề sau: + Chuyên đề 1: Hướng dẫn về số phức và các bài toán liên quan + Chuyên đề 2: Phương pháp tọa độ trong không gian Oxyz + Chuyên đề 3: Ôn tập về nguyên hàm và tích phân + Chuyên đề 4: Thảo luận về mũ và logarit + Chuyên đề 5: Khảo sát hàm số và những vấn đề liên quan Tài liệu này được chọn lọc các câu hỏi trắc nghiệm phù hợp để giúp học sinh rèn luyện kỹ năng sử dụng máy tính thông qua các chuyên đề và dạng toán tương ứng. Việc áp dụng máy tính đúng cách không chỉ giúp giải toán một cách nhanh chóng và chính xác, mà còn giúp học sinh hiểu rõ hơn về các phương pháp giải toán và cải thiện kỹ năng tính toán của mình.
40 bài toán tối ưu thực tế có lời giải chi tiết Nguyễn Minh Đức
Nội dung 40 bài toán tối ưu thực tế có lời giải chi tiết Nguyễn Minh Đức Bản PDF - Nội dung bài viết Tài liệu 40 bài toán tối ưu thực tế với lời giải chi tiết Tài liệu 40 bài toán tối ưu thực tế với lời giải chi tiết Tài liệu "40 bài toán tối ưu thực tế" được biên soạn bởi tác giả Nguyễn Minh Đức, bao gồm 30 trang với 40 bài toán được lựa chọn kỹ càng từ thực tế, cung cấp đáp án và lời giải chi tiết. Tài liệu này là nguồn tư liệu hữu ích cho những ai quan tâm đến tối ưu hóa trong thực tế và muốn nắm vững cách giải quyết các bài toán phức tạp.
Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông
Nội dung Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông Bản PDF - Nội dung bài viết Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông Giải chi tiết 214 bài toán trắc nghiệm ứng dụng thực tiễn Trần Thông Tài liệu này bao gồm 120 trang với 214 bài toán thực tế và chi tiết lời giải. Dưới đây là một số ví dụ từ tài liệu: - Một công ty muốn xây đường ống từ bờ biển đến một hòn đảo. Chi phí xây trên bờ là 50.000USD/km, và dưới nước là 130.000USD/km. B’ là điểm sao cho BB’ vuông góc với bờ biển. Tìm vị trí C trên đoạn AB’ để chi phí xây ống theo ACB là ít nhất. - Tấm gỗ hình vuông cạnh 200cm muốn cắt thành tấm tam giác vuông sao cho diện tích lớn nhất. Hãy tính cạnh huyền của tấm gỗ mới. - Ông A muốn mua tặng vợ một món quà trong chiếc hộp có dạng hình vuông và mạ vàng. Tính chiều cao và cạnh đáy của hộp để lượng vàng là ít nhất. Những bài toán này sẽ giúp bạn hiểu rõ các khái niệm toán học qua các tình huống thực tế, và cách giải quyết chúng một cách logic và chi tiết. Đây là tài liệu hữu ích cho việc ôn tập và rèn luyện kỹ năng giải toán của bạn.