Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải một số bài toán ứng dụng thực tiễn - Trần Hoàng Long
Tài liệu gồm 71 trang tuyển chọn và giải chi tiết một số bài toán thực tế vận dụng kiến thức Toán lớp 10, 11 và 12. Việc vận dụng kiến thức toán học vào giải quyết các vấn đề thực tiễn là một vấn đề quan trọng trong dạy và học toán ở trường phổ thông. Điều này đó được thể hiện từ trong đề thi THPT quốc gia và đề thi minh họa của Bộ Giáo dục. Trong chương trình sách giáo khoa Toán hiện hành, nhất là trong chương trình Đại số và Giải tích, có nhiều chủ đề kiến thức có nhiều lợi thế trong việc lồng ghép những bài toán mang tính thực tế cao, chẳng hạn: Hệ bất phương trình bậc nhất hai ẩn, Phương trình bậc hai, Bất phương trình bậc hai (Lớp 10), Giải tích tổ hợp, Xác suất, Cấp số cộng, Cấp số nhân (lớp 11), Đạo hàm (Lớp 12) … Những chủ đề có vai trò rất quan trọng trong việc rèn luyện cho học sinh kỹ năng vận dụng kiến thức Toán học vào thực tiễn . Tuy nhiên, vì nhiều lý do ít được sự quan tâm, chú ý khai thác của người dạy và người học toán. Trong chuyên đề này, tôi cố gắng làm những công việc sau đây: + Phân loại các bài tập theo từng chủ đề kiến thức + Cố gắng sưu tầm càng nhiều càng tốt các tình huống thực tiễn từ đó nếu lên bài toán thực tế cần phải giải quyết, vận dụng kiến thức toán đă học để giải quyết vấn đề + Xây dựng hệ thống các bài toán thực tế theo từng chủ đề kiến thức. Mặc dù đă rất cố gắng nhưng do khả năng hạn chế nên chuyên đề này chắc chắn sẽ còn nhiều hạn chế, kính mong quý thầy, cô đóng góp ý kiến để tài liệu này tốt hơn ở tương lai [ads] Các chủ đề trong tài liệu : 1. Chủ đề đạo hàm: Đây là công cụ hữu hiệu trong việc tìm cực trị; tìm giá trị lớn nhất, nhỏ nhất của hàm số. Thông qua việc dạy học kiến thức này, ta có thể cho học sinh giải những bài toán thực tiễn khá hấp dẫn và mang nhiều ý nghĩa. 2. Chủ đề hàm số: Từ tình huống thực tế cần giải quyết, tiến hành thực nghiệm, thu thập các số liệu từ đó lập ra hàm số sau đó khảo sát hàm số tm ra phương án tối ưu cho vấn đề cần giải quyết. 3. Chủ đề hệ bất phương trình bậc nhất hai ẩn: Trong chủ đề này có thể khai thác được nhiều dạng toán gần gũi với đời sống thực tiễn như: Bài toán vận tải, Bài toán sản xuất đồng bộ, Bài toán thực đơn, Bài toán lập kế hoạch sản xuất trong điều kiện tài nguyên hạn chế, Bài toán vốn đầu tư nhỏ nhất, Bài toán pha trộn … 4. Chủ đề dãy số, cấp số cộng, cấp số nhân 5. Chủ đề giải tích tổ hợp, xác suất
Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế
Cuốn sách Tiếp cận phương pháp và vận dụng cao trong trắc nghiệm bài toán thực tế – Trần Công Diêu, Nguyễn Văn Quang gồm 444 trang phân dạng, tuyển chọn và hướng dẫn giải các bài toán trắc nghiệm thực tế và các bài toán vận dụng cao trong các đề thi thử môn Toán. Chương 1. Bài toán vận dụng cao chuyên đề ứng dụng đạo hàm Chủ đề 1. Các bài toán thực tế ứng dụng đạo hàm để giải + Dạng 1. Một số bài toán ứng dụng về kinh doanh, sản xuất trong đời sống + Dạng 2. Một số bài toán ứng dụng về chuyển động Chủ đề 2. Tìm giá trị của tham số để hàm số đơn điệu trên miền D Chủ đề 3. Giải và biện luận phương trình, bất phương trình dựa vào hàm số Chủ đề 4. Tìm giá trị của tham số để hàm số có cực trị thỏa mãn các yếu tố đặc biệt Chủ đề 5. Tìm giá trị của tham số để 2 hàm số giao nhau thỏa mãn các yếu tố đặc biệt Chủ đề 6. Tìm giá trị của tham số để tiếp tuyến của hàm số thỏa mãn các yếu tố đặc biệt Chương 2. Bài toán vận dụng cao chuyên đề hàm số mũ, logarit Chủ đề 1. Tính số chữ số của một số tự nhiên Chủ đề 2. Các dạng bài toán lãi suất Chủ đề 3. Các dạng toán khác: Hàm số mũ và hàm số logarit còn được áp dụng trong các bài toán tính dân số, tính lượng khí, tính độ pH [ads] Chương 3. Bài toán vận dụng cao nguyên hàm, tích phân Chủ đề 1. Các bài toán nguyên hàm Chủ đề 2. Các bài toán tích phân Chủ đề 3. Ứng dụng tích phân để tính diện tích, thể tích Chủ đề 4. Ứng dụng tích phân giải bài toán vật lý và bài toán thực tế Chương 4. Bài toán vận dụng cao số phức Chủ đề 1. Các bài toán tính toán số phức Chủ đề 2. Phương trình số phức Chủ đề 3. Các bài toán liên quan đến biểu diễn điểm, tập hợp điểm Chương 5. Bài toán vận dụng cao hình học không gian Chủ đề 1. Thể tích khối đa diện Chủ đề 2. Mặt cầu – Khối cầu Chủ đề 3. Mặt nón – Khối nón Chủ đề 4. Mặt trụ – Khối trụ Chủ đề 5. Ứng dụng hình học không gian giải các bài toán thực tế Chương 6. Bài toán vận dụng cao hình học Oxyz Chủ đề 1. Tọa độ của điểm và vectơ trong không gian Chủ đề 2. Mặt phẳng trong không gian Chủ đề 3. Đường thẳng trong không gian Chủ đề 4. Mặt cầu Xem thêm : + Tổng hợp 250 câu hỏi trắc nghiệm vận dụng cao – Nhóm Toán   + Tuyển chọn 152 bài toán vận dụng cao trong các đề thi thử – Nguyễn Văn Rin
Sổ tay Hình học 10 - 11 - 12
Cuốn sổ tay Hình học 10 – 11 – 12 gồm 76 trang giúp học sinh tra cứu nhanh lý thuyết, công thức và phương pháp giải các dạng toán Hình học lớp 10, 11, 12. Nội dung sổ tay bao gồm 5 chương: 1. Vectơ 2. Hệ thức lượng trong tam giác 3. Tọa độ trong không gian 2 chiều 4. Hình học không gian cổ điển 5. Tọa độ trong không gian 3 chiều  [ads] Bạn đọc có thể xem thêm Sổ tay Đại số và Giải tích 10 – 11 – 12
Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 - 9 - 10)
Bản Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 8 – 9 – 10) Advance Version này chứa 90% tâm pháp và chiêu thức nhưng cũng giúp các hạ tăng công lực rất nhiều. Các bạn chưa nắm vững các kỹ thuật Casio cơ bản có thể tham khảo cuốn Bí kíp Thế Lực 2018 ver 1.0 (Chinh phục điểm 5 – 8)  Danh mục sách : + Giải đề chính thức 2017 + Giải đề minh họa 2017 lần 3 + Các kỹ năng Casio cơ bản [ads] + Một số dạng toán lớp 11 + Hàm số + Mũ – Logarit + Nguyên hàm – Tích phân + Số phức + Hình Oxyz + Hình học không gian + Toán ứng dụng