Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán
Nội dung Tuyển chọn câu hỏi vận dụng cao trong đề thi thử THPTQG 2019 môn Toán Bản PDF - Nội dung bài viết Tập trung ôn tập để chinh phục mức điểm cao trong kỳ thi THPTQG 2019 môn Toán Tập trung ôn tập để chinh phục mức điểm cao trong kỳ thi THPTQG 2019 môn Toán Chỉ còn một tháng nữa, kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2018 – 2019 sẽ diễn ra, đây là thời điểm quan trọng để các em học sinh tập trung ôn tập kiến thức và kỹ năng giải toán. Để nâng cao khả năng vận dụng toán cao cấp, học sinh cần thử sức với nhiều dạng toán khác nhau và đặc biệt là các dạng toán phức tạp. Trong kỳ thi sắp tới, việc củng cố kiến thức và rèn luyện kỹ năng giải toán trở nên quan trọng hơn bao giờ hết. Hãy đồng hành cùng chúng tôi trong hành trình chinh phục mức điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia 2019 môn Toán bằng việc ôn tập, giải các bài tập vận dụng cao và chuẩn bị tinh thần cho những thách thức sắp tới.
Phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019
Nội dung Phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019 Bản PDF - Nội dung bài viết Tài liệu phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019 Tài liệu phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019 Tài liệu này bao gồm 54 trang hướng dẫn cách giải, phân tích, bình luận và phát triển các câu hỏi và bài toán vận dụng cao từ câu 39 đến câu 50 trong đề tham khảo môn Toán kỳ thi THPT Quốc gia năm 2019. Tài liệu được biên soạn bởi nhóm thầy, cô giáo tận tâm từ Nhóm Toán VD – VDC. Lời mở đầu của tài liệu chia sẻ: "Làm toán không nên vội vàng, hãy làm từ từ để hiểu rõ bản chất và ý nghĩa của nó trong thực tế. Phải trả lại danh hiệu cho môn Toán: 'Toán học là nữ hoàng của mọi bộ môn khoa học'. Kỳ thi THPT Quốc gia đã chuyển từ thi tự luận sang thi trắc nghiệm từ năm 2016 – 2018, điều này đòi hỏi sự thay đổi trong cách dạy, kiểm tra và ra đề. Sự đổi mới này ảnh hưởng toàn bộ chương trình môn Toán và kỹ năng giải toán." Đến kỳ thi THPT Quốc gia năm 2018 – 2019, Bộ Giáo Dục đã đặt mục tiêu hạn chế việc "Casio hóa", tăng cường các câu hỏi vận dụng và vận dụng cao nhằm phân loại học sinh theo trình độ. Tài liệu này được biên soạn với mong muốn giúp học sinh tiếp cận các bài toán khó trong đề Tham Khảo 2019 một cách hiệu quả. Nhóm tác giả hy vọng rằng bằng những phân tích và bình luận chi tiết, học sinh sẽ hiểu rõ hơn về nội dung của đề thi và chuẩn bị tốt nhất cho kỳ thi sắp tới.
Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3)
Nội dung Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) Bản PDF - Nội dung bài viết Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) Dưới đây là đề thi số 3 trong loạt đề ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán, nhằm chuẩn bị cho kỳ thi THPT Quốc gia năm 2019. Đề thi này được biên soạn bởi nhóm Chinh Phục Olympic Toán, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT, sở GD&ĐT. Đề bao gồm 60 bài toán trắc nghiệm, có phân tích và lời giải chi tiết, với mức độ khó và rất khó. Dưới đây là một số câu hỏi đặc biệt trong đề thi: 1. Tìm tập hợp giá trị của tham số m sao cho diện tích tam giác IAB đạt giá trị lớn nhất trong bài toán hình học. 2. Xác định xác suất để chọn được một số có dạng a1a2a3a4a5 từ tập hợp các số có 5 chữ số phân biệt được lập từ tập A. 3. Tính giá trị nhỏ nhất của thể tích khối chóp S.ABCD trong bài toán hình học, khi cosin góc giữa đường thẳng SB và mặt phẳng (ABCD) được xác định. Những câu hỏi này đều đòi hỏi sự tập trung, logic và kiến thức sâu rộng về môn Toán. Hy vọng rằng việc ôn luyện thông qua các đề thi này sẽ giúp các bạn học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn thành công!
Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 2)
Nội dung Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 2) Bản PDF - Nội dung bài viết Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 2) Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 2) Tài liệu này bao gồm 35 trang tài liệu chọn lọc 40 câu hỏi và bài toán vận dụng cao có lời giải chi tiết, nhằm giúp các bạn ôn luyện cho kỳ thi THPTQG môn Toán năm 2019. Các bài toán trong tài liệu được chọn lọc từ các đề thi thử và đề khảo sát chất lượng môn Toán giai đoạn giữa học kỳ 1 năm học 2018 - 2019. Tài liệu được biên soạn bởi nhóm tác giả Chinh Phục Olympic Toán, nhằm giúp học sinh nắm vững kiến thức và kỹ năng cần thiết cho kỳ thi sắp tới.