Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi thành phố môn Toán năm 2022 - 2023 sở GDĐT Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố và chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; kỳ thi được diễn ra vào thứ Ba ngày 20 tháng 09 năm 2022. Trích dẫn đề chọn học sinh giỏi thành phố môn Toán năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho tam giác ABC nhọn, AB < BC < CA, trọng tâm G, các đường cao AD, BE, CF đồng quy tại H (D, E, F lần lượt nằm trên BC, CA, AB). a) Đường tròn (BHC) cắt đường tròn đường kính AH tại T khác H. Chứng minh rằng A, T, G thẳng hàng. b) Các điểm I, J, K lần lượt trên các đường thẳng BC, CA, AB sao cho HI, HJ, HK tương ứng vuông góc với AG, BG, CG. Chứng minh rằng các đường tròn (AGD), (BGE), (CGF) cùng đi qua một điểm L khác G và I, J, K, L thẳng hàng. + Chứng minh rằng phương trình (x2 + 2y2)2 – 2(z2 + 2t2)2 = 1 có vô hạn nghiệm tự nhiên. + Xâu tam phân độ dài n có dạng X = a1a2…an với ak thuộc {0;1;2} với mọi k = 1..n. Một xâu con liên tiếp bằng nhau cực đại của X có dạng Y = aiai+1…aj với 1 =< i =< j =< n mà ai = ai+1 = … = aj, ngoài ra ai-1 khác ai (nếu i >= 2) và aj khác aj+1 (nếu j =< n – 1). Ví dụ xâu 1000211 có các câu con liên tiếp bằng nhau cực đại là 1, 000, 2 và 11. a) Gọi An là tập tất cả các xâu tam phân độ dài n mà các xâu con liên tiếp bằng nhau cực đại đều có độ dài lẻ. Chứng minh rằng |A2023| = 2|A2022| + |A2021|. b) Gọi Bn là tập tất cả các câu tam phân độ dài n mà 0 và 2 không bao giờ đứng cạnh nhau. Chúng minh rằng |B2023| = |A2023| + |A2022|/3.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 THPT năm học 2017 - 2018 sở GD và ĐT Thái Bình
Đề thi chọn học sinh giỏi Toán 12 THPT năm học 2017 – 2018 sở GD và ĐT Thái Bình gồm 1 trang với 6 bài toán tự luận, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Cho hàm số: y = (2x – 1)/(x + 1) có đồ thị là (C). Tìm tọa độ điểm M thuộc đồ thị (C) sao cho tổng khoảng cách từ điểm M đến hai đường tiệm cận đạt giá trị nhỏ nhất. + Cho (H) là đa giác đều 2n đỉnh nội tiếp đường tròn tâm O (n ∈ N*, n ≥ 2). Gọi S là tập hợp các tam giác có ba đỉnh là các đỉnh của đa giác (H). Chọn ngẫu nhiên một tam giác thuộc tập S, biết rằng xác suất chọn được một tam giác vuông trong tập S là 1/13. Tìm n. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, góc ABC = 60 độ, SA = SB = SC, SD = 2a. Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. 1. Tính khoảng cách từ điểm A đến mặt phẳng (SCD). 2. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V1; V2 trong đó V1 là thể tích khối đa diện chứa đỉnh S. Tính V1/V2. 3. Gọi M, N theo thứ tự là hình chiếu vuông góc của K trên SC và SA. Tính diện tích mặt cầu ngoại tiếp khối chóp K.ACMN.
Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Bình Phước
Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Bình Phước gồm 6 bài toán tự luận, có lời giải chi tiết và thang điểm. Đề thi dành cho cả khối lớp THPT và GDTX. Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1; 2). Gọi M N, lần lượt là trung điểm của các cạnh CD và AD, K là giao điểm của BM với CN. Viết phương trình của đường tròn ngoại tiếp tam giác BNK, biết đường thẳng BM có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. [ads] + Cho đường tròn (O) đường kính AB, một đường thẳng d không có điểm chung với đường tròn (O) và d vuông góc với AB kéo dài tại K (B nằm giữa A và K). Gọi C là một điểm nằm trên đường tròn (O), (C khác A và B). Gọi D là giao điểm của AC và d, từ D kẻ tiếp tuyến DE với đường tròn (E là tiếp điểm và E, C nằm về hai phía của đường kính AB). Gọi F là giao điểm của EB và d, G là giao điểm của AF và (O), H là điểm đối xứng của G qua AB. Chứng minh ba điểm F, C, H thẳng hàng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với, AB = AD = a, CD = 2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt đáy bằng 45 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SD và BC.
Đề thi chọn HSG Toán 12 THPT năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc
Đề thi chọn HSG Toán 12 THPT năm học 2017 – 2018 sở GD và ĐT Vĩnh Phúc gồm 10 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cường độ động đất M được cho bởi công thức M = logA – logA0 trong đó A là biên độ rung chấn tối đa, A0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiêu lần biên độ rung chấn tối đa của trận động đất kia? [ads] + Trong không gian cho 2n điểm phân biệt (n > 4, n ∈ N), trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt. + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m – 1 (m là tham số thực). Chứng minh rằng với mọi m, đường thẳng d luôn cắt (C) tại hai điểm phân biệt A, B. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến với (C) tại A và B. Xác định m để biểu thức (3k1 + 1)^2.(3k2 + 1)^2 đạt giá trị nhỏ nhất.
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .