Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng Điệp

Nội dung 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng Điệp Bản PDF - Nội dung bài viết 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng ĐiệpPHẦN 1: ĐẠI SỐ VÀ GIẢI TÍCHPHẦN 2: HÌNH HỌC 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ Phạm Hoàng Điệp Tài liệu ôn thi THPT QG môn Toán do Th.S Phạm Hoàng Điệp biên soạn bao gồm 542 trang, tập hợp 10 chuyên đề theo mức độ, giúp học sinh lớp 12 chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán được tổ chức bởi Bộ Giáo dục và Đào tạo. PHẦN 1: ĐẠI SỐ VÀ GIẢI TÍCH 1. Tổ hợp – Xác suất - Kiến thức cần nhớ: Bao gồm hai quy tắc đếm cơ bản, hoán vị, chỉnh hợp, tổ hợp và tính xác suất. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 2. Dãy số – Cấp số cộng – Cấp số nhân - Kiến thức cần nhớ: Bao gồm cấp số cộng và cấp số nhân. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 3. Hàm số - Kiến thức cần nhớ: Bao gồm các kiến thức về tính đơn điệu, điểm cực trị, giá trị lớn nhất/nhỏ nhất, tiệm cận, khảo sát đồ thị, điều kiện tương giao đồ thị, đạo hàm, bảng biến thiên. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 4. Lô-ga-rít - Kiến thức cần nhớ: Bao gồm các công thức giải phương trình – bất phương trình lô-ga-rít, hàm số mũ và lô-ga-rít, giới hạn, đạo hàm, áp dụng tính đơn điệu, lãi đơn và lãi kép. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 5. Nguyên hàm – Tích phân – Ứng dụng - Kiến thức cần nhớ: Bao gồm nguyên hàm, tích phân, phương pháp tính nguyên hàm, nguyên hàm của hàm ẩn, định nghĩa tích phân, phương pháp đổi biến số, tích phân từng phần. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 6. Số phức - Kiến thức cần nhớ: Bao gồm định nghĩa số phức, số phức liên hợp, phép toán, căn bậc hai của số thực âm, giải phương trình bậc hai. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. PHẦN 2: HÌNH HỌC 1. Góc và khoảng cách trong không gian - Kiến thức cần nhớ: Góc giữa đường thẳng, đường thẳng và mặt phẳng, hai mặt phẳng. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 2. Khối đa diện - Kiến thức cần nhớ: Thể tích khối chóp, lăng trụ, tỉ số thể tích, diện tích đa giác. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 3. Khối tròn xoay - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó. 4. Hình học không gian Oxyz - Kiến thức cần nhớ: Tọa độ vec-tơ và điểm, đường thẳng, mặt phẳng. - Bài tập mẫu và bài tập tương tự và phát triển ở 4 mức độ từ dễ đến khó.

Nguồn: sytu.vn

Đọc Sách

Tổng hợp các bài toán mức độ vận dụng cao ôn thi THPT Quốc gia Nhóm Toán
Tài liệu gồm 94 trang với các bài toán mức độ vận dụng cao dành để ôn luyện điểm 9, 10 kỳ thi THPT Quốc gia 2017. Trích dẫn tài liệu : + Một đoàn tàu chuyển động trên một đường thẳng nằm ngang với vận tốc không đổi v0.Vào thời điểm nào đó người ta tắt máy. Lực hãm và lực cản tổng hợp cả đoàn tàu bằng 1/10 trọng lượng P của nó. Hãy các định chuyển động của đoàn tàu khi tắt máy và hãm. [ads] + Một thanh AB có chiều dài là 2a ban đầu người ta giữ thanh ở góc nghiêng α = α0, một đầu thanh tựa không ma sát với bức tường thẳng đứng. Khi buông thanh, nó sẽ trượt xuống dưới tác dụng của trọng lực. Hãy biểu diễn góc α theo thời gian t (Tính bằng công thức tính phân). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của AD. Gọi S’ là giao của SC với mặt phẳng chứa BM và song song với SA. Tính tỉ số thể tích của hai khối chóp S’.BCDM và S.ABCD.
Bài toán thực tế liên quan đến hình học - Nguyễn Bá Hoàng
Tài liệu gồm 45 trang với các bài toán thực tế liên quan đến hình học thường xoay quanh một số nội dung như sau: Tính toán để đường đi được ngắn nhất, tính toán để diện tích được lớn nhất, hay cũng có thể đơn giản là tính diện tích hoặc thể tích của một vật. A. Nội dung kiến thức 1. Công thức tính chu vi, diện tích của các hình, thể tích của các khối hình 2. Cách tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn, khoảng, nửa đoạn, nửa khoảng 3. Ứng dụng của tích phân trong việc tính diện tích hình phẳng, tính thể tích của khối tròn xoay B. Ví dụ minh hoạ: Gồm 17 ví dụ minh họa có phân tích và lời giải chi tiết C. Bài tập đề nghị: Gồm 83 bài toán trắc nghiệm thực tế liên quan đến hình học D. Hướng dẫn, đáp án [ads]
Bài toán thực tế và bài toán tối ưu min - max - Lê Viết Nhơn
Tài liệu gồm 23 trang tuyển chọn các bài toán thực tế và bài toán tối ưu min – max do thầy Lê Viết Nhơn sưu tầm và biên soạn, với nội dung gồm các phần: + Phần 1. Bài toán thực tế tối ưu+ Phần 2. Các bài toán thực tế liên quan đến tích phân + Phần 3. Bài toán thực tế liên quan đến mũ và lôgarit + Phần 4. Bài tập rèn luyện trích từ đề thi thử các trường THPT [ads] Trích dẫn tài liệu : + Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. + Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n gam. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 - 2017 môn Toán - Đoàn Quỳnh
Sách gồm 246 trang với 2 phần: + Phần 1. Ôn tập theo chủ đề. Phần này ôn lại những kiến thức, kỹ năng cần thiết cùng một số câu trắc nghiệm theo 7 chủ đề chương trình Toán 12. + Phần 2. Một số đề tự luyện, đưa ra 9 đề, được biên soạn phỏng theo đề minh họa của Bộ GD và ĐT đã được công bố. Sách do Nhà xuất bản Giáo dục Việt Nam phát hành. [ads]