Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 - 2024 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 10 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Đường cao tốc Bắc – Nam đoạn từ huyện Thạch Hà đến Đèo Ngang cách nhau 80km. Người ta tính rằng nếu lái xe ô tô đi trên đoạn đường cao tốc đó với vận tốc lớn hơn khi lái xe đi trên đoạn đường thường (có độ dài củng 80km) là 60km/h thì thời gian rút ngắn được 1 giờ 12 phút. Tính vận tốc của xe ô tô đi trên cao tốc. + Cho tam giác KMN vuông tại K có đường cao KA, phân giác KB (A và B thuộc cạnh MN). Biết KM 12cm và 3 tan N 4. Tính KN, KA và diện tích tam giác KMB. + Cho tam giác ABC nhọn nội tiếp đường tròng (O). Kẻ đường kính AK, kẻ CD vuông góc với AB và CE vuông góc với AK (D AB E AK). a. Chứng minh tứ giác ADEC là tứ giác nội tiếp đường tròn. b. Gọi M là trung điểm của BC. Chứng minh hai tam giác ADC và OMC đồng dạng và 3 điểm D, M, E thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Bình Định
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định dành cho các thí sinh thi vào các lớp chuyên Toán; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. + Cho tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O). Gọi M là điểm bất kì trên cung nhỏ BC. Chứng minh rằng MA > MB + MC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn tâm O. Gọi D là trung điểm cạnh BC và E, F tương ứng là hình chiếu vuông góc của D lên AC và AB. Đường thẳng EF cắt các đường thẳng AO và BC theo thứ tự M và N. (a) Chứng minh tứ giác AMDN nội tiếp. (b) Gọi K là giao điểm của AB và ED, L là giao điểm của AC và FD, H là trung điểm của KL và I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh HI ⊥ EF.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 trường THPT chuyên Thái Bình
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình được dành cho các thí sinh thi vào các lớp chuyên Toán và chuyên Tin học; kỳ thi được tổ chức ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình : + Cho biểu thức P = (x − 2)2x + 2√x − 1. Tìm số tự nhiên x lớn nhất có hai chữ số để P có giá trị là số chính phương. + Cho P(x) là một đa thức có tất cả các hệ số đều là số nguyên thoả mãn P(0) = 21; P(1) = 7. Chứng minh rằng P(x) không có nghiệm nguyên. + Giả sử phương trình 2×2 + 2ax + 1 − b = 0 có hai nghiệm nguyên (với a, b lần lượt là tham số). Chứng minh rằng a2 − b2 + 2 là số nguyên và không chia hết cho 3.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Long
Chủ Nhật ngày 19 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long gồm có 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Long : + Một người dự định đi xe máy từ Vĩnh Long đến Sóc Trăng cách nhau 90 km. Vì có việc gấp cần đến Sóc Trăng trước giờ dự định 27 phút, nên người ấy phải tăng vận tốc thêm 10 km/h. Hãy tính vận tốc xe máy mà người đó dự định đi. + Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4 cm, CH = 9 cm. a) Tính độ dài đường cao AH và số đo ABH (làm tròn đến độ). b) Vẽ đường trung tuyến AM của tam giác ABC (M thuộc BC), tính diện tích tam giác AHM. [ads] + Cho nửa đường tròn tâm O đường kính AB. Vẽ đường thẳng d vuông góc với OA tại M (M khác O, A). Trên d lấy điểm N sao cho N nằm bên ngoài nửa đường tròn (O). Kẻ tiếp tuyến NE với nửa đường tròn (O) (E là tiếp điểm, E và A nằm cùng một phía đối với đường thẳng d). a) Chứng minh tứ giác OMEN nội tiếp được đường tròn. b) Nối NB cắt nửa đường tròn (O) tại C. Chứng minh NE^2 = NC.NB. c) Gọi H là giao điểm của AC và d, F là giao điểm của tia EH và nửa đường tròn (O). Chứng minh NEF = NOF.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 sở GDĐT Vĩnh Phúc
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 phần: phần trắc nghiệm gồm 04 câu, chiếm 02 điểm, phần tự luận gồm 04 câu, chiếm 08 điểm, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Cho parabol (P): y = 1/2.x^2 và đường thẳng d: y = 2x + m (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn (x1x2 + 1)^2 = x1 + x2 + x1x2 + 3. + Một đội xe theo kế hoạch mỗi ngày chở số tấn hàng như nhau và dự định chở 140 tấn hàng trong một số ngày. Do mỗi ngày đội xe đó chở vượt mức 5 tấn nên đội xe đã hoàn thành kế hoạch sớm hơn thời gian dự định 1 ngày và chở thêm được 10 tấn hàng. Hỏi số ngày dự định theo kế hoạch là bao nhiêu? [ads] + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm). Kẻ đường kính BD của đường tròn (O). Đường thẳng đi qua O vuông góc với đường thẳng AD và cắt AD, BC lần lượt tại K, E. Gọi I là giao điểm của OA và BC. a) Chứng minh rằng các tứ giác ABOC, AIKE nội tiếp đường tròn. b) Chứng minh rằng OI.OA = OK.OE. c) Biết OA = 5 cm, đường tròn (O) có bán kính R = 3cm. Tính độ dài đoạn thẳng BE.