Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập phương trình và hệ phương trình

Tài liệu gồm 99 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phương trình và hệ phương trình, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 3 (Toán 10). 1. MỞ ĐẦU VỀ PHƯƠNG TRÌNH I. Tìm tập xác định của phương trình. Dạng 1. Tìm điều kiện xác định của phương trình. II. Phương trình hệ quả. 1. Tóm tắt lí thuyết. 2. Các phép biến đổi dẫn đến phương trình hệ quả thường gặp. 3. Phương pháp giải phương trình dựa vào phương trình hệ quả. Dạng 2. Khử mẫu (nhân hai vế với biểu thức). Dạng 3. Bình phương hai vế (làm mất căn). III. Phương trình tương đương. Dạng 4. Phương pháp chứng minh hai phương trình tương đương. Bài tập tổng hợp. 2. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI I. Tóm tắt lí thuyết. II. Các dạng toán. Dạng 1. Giải và biện luận phương trình bậc nhất. Dạng 2. Phương trình chứa ẩn dưới dấu căn. Dạng 3. Phương trình chứa ẩn trong dấu giá trị tuyệt đối. Dạng 4. Phương trình chứa ẩn ở mẫu. Phương trình bậc bốn trùng phương. Dạng 5. Biện luận theo m có áp dụng định lí Viète. Bài tập tổng hợp. 3. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN I. Tóm tắt lí thuyết. 1. Phương trình bậc nhất hai ẩn. 2. Hệ hai phương trình bậc nhất hai ẩn. 3. Hệ ba phương trình bậc nhất ba ẩn. II. Các dạng toán. Dạng 1. Giải hệ hai phương trình bậc nhất hai ẩn bằng phương pháp thế hoặc phương pháp cộng đại số. Dạng 2. Hệ ba phương trình bậc nhất ba ẩn. Dạng 3. Giải và biện luận hệ 2 phương trình bậc nhất 2 ẩn có chứa tham số (PP Crame). 4. HỆ PHƯƠNG TRÌNH HAI ẨN I. Hệ phương trình gồm các phương trình bậc nhất và bậc hai. II. Hệ phương trình đối xứng loại 1. III. Hệ phương trình đối xứng loại 2. Dạng 1. Giải hệ phương trình đối xứng loại 2. Dạng 2. Tìm điều kiện của tham số thỏa điều kiện cho trước. IV. Hệ phương trình đẳng cấp. V. Hệ phương trình hai ẩn khác. 5. ĐỀ KIỂM TRA CHƯƠNG III I. Đề số 1a. II. Đề số 1b. III. Đề số 2a. IV. Đề số 2b. V. Đề số 3a. VI. Đề số 3b.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn một số bài toán PT - BPT - HPT hay - Lương Anh Nhật
Thường thường câu 9 điểm trong đề thi PTTH Quốc gia là câu giải phương trình, bất phương trình hay hệ phương trình. Theo ý kiến cá nhân của tôi thì phương trình là nền tảng cho các dạng còn lại, bất phương trình kế thừa phương trình nhưng mang màu sắc của xét dấu là chủ yếu còn lại là các phép biến đổi. Hệ phương trình là dung hòa của hai (nhiều) phương trình. Nói chung cái khó của các bài toán này nằm ở kinh nghiệm giải của các bạn và do ý đồ kết hợp các phương pháp của tác giả! Các ví dụ trên đây là các dạng thường gặp của “bài toán 9 điểm” trong bài thi PTTH Quốc gia. Cùng xem một số câu tham khảo nhé! [ads]
Sử dụng máy tính cầm tay trong tìm kiếm lời giải PT - BPT - Mai Xuân Việt
Tài liệu gồm 36 trang hướng dẫn sử dụng máy tính cầm tay trong tìm kiếm lời giải phương trình và bất phương trình do tác giả Mai Xuân Việt biên soạn, tài liệu ghi lại chi tiết quá trình bấm máy kèm theo hình ảnh hướng dẫn cụ thể. Nội dung tài liệu : A. PHƯƠNG PHÁP NHÂN LIÊN HỢP + PHẦN 1: XÁC ĐỊNH SỐ NGHIỆM CỦA PHƯƠNG TRÌNH: Việc biết một phương trình có bao nhiêu nghiệm, nghiêm đó là nghiệm vô tỷ hay hữu tỷ vô cùng quan trọng. + PHẦN 2: PHÂN BIỆT NGHIỆM ĐƠN – NGHIỆM BỘI VÀ CÁCH XÁC ĐỊNH 1. Nghiệm đơn: Nghiệm đơn x = a là nghiệm mà tại đó phương trình f(x) = 0 được phân tích thành nhân tử có dạng (x – a).g(x) = 0 và g(x) ≠ 0. 2. Nghiệm kép: Nghiệm kép x = a là nghiệm mà tại đó phương trình f(x) = 0 được phân tích thành nhân tử có dạng (x – a)^2.g(x) = 0 và g(x) ≠ 0. 3. Nghiệm bội ba: Nghiệm bội ba x = a là nghiệm mà tại đó phương trình f(x0 = 0 được phân tích thành nhân tử có dạng (x – a)^3.g(x) = 0 và g(x) ≠ 0. 4. Cách xác định nghiệm bội thần tốc bằng giới hạn: Như các em đã biết dựa vào các kiến thức liên quan ta có các cở sở để xác định nghiệm bội nhưng nhược điểm của các phương pháp trên vẫn là chưa đạt được tốc độ cần thiết, đặc biệt là nếu đụng vô các nghiệm bội bậc cao lớn hơn 3. Chính vì vậy mình sẽ đưa ra thêm một phương pháp xác định nghiệm bội bằng giới hạn để xác định nhanh hơn rất nhiều. [ads] + PHẦN 3: BÀI TẬP MẪU VÀ BÀI TẬP TỰ LUYỆN 1. Nhân liên hợp nghiệm hữu tỉ đơn 2. Nhân liên hợp nghiệm vô tỷ đơn 3. Nhân liên hợp nghiệm kép 4. Nhân liên hợp nghiệm bội bậc ba trở lên B. PHƯƠNG PHÁP CÂN BẰNG TÍCH Trong các bài toán ra xét thì: + Bậc của căn thức là bậc 2 hoặc bậc 3. + Đa thức f(x), h(x) và g(x) có bậc bé hơn hoặc bằng 4. + Đa thức A(x) thường sẽ là một biểu thức bậc 1: A(x) = ax + b. C. PHƯƠNG PHÁP TẠO TÍCH NHÂN TỬ Đưa một phương trình vô tỉ về dạng tích của các phương trình vô tỷ cơ bản. Phương pháp chủ yếu dựa vào việc nhóm nhân tử thông qua phương pháp liên hợp hay có nói cách khác đây là cách đi ngược để tìm liên hợp. Ưu điểm của phương pháp này là nó sẽ hạn chế việc các bạn đánh giá biểu thức sau khi liên hợp. Chú ý: Phương pháp thực sự rất hiểu quả với phương trình – bất phương trình vô tỷ dạng 1 căn thức nên muốn sử dụng phương pháp này cần chuẩn hoá phương trình – bất phương trình đưa về một căn thức hết là được.
Kĩ thuật đặt ẩn phụ giải phương trình và bất phương trình chứa căn - Nguyễn Tiến Chinh
Tài liệu gồm 23 trang giới thiệu kỹ thuật đặt ẩn phụ giải phương trình và bất phương trình chứa căn do thầy giáo Nguyễn Tiến Chinh biên soạn. Nội dung tài liệu gồm các phần : 1/ Đặt một ẩn phụ Tìm mối liên hệ giữa các biến để đặt ẩn phụ thích hợp. Xin nhắc lại,hầu hết các đề bài sẽ không cho ngay mối quan hệ để nhìn thấy cách đặt  ẩn phụ ngay do đó ta cần biết phán đoán hướng đi của bài toán dựa trên cơ sở phân tích hợp lý. 2/ Đặt hai ẩn phụ Thông thường, ta tìm mối liên hệ giữa biến để đặt ẩn phụ đưa về phương trình đẳng cấp (đồng bậc) hoặc hệ phương trình đối xứng loại 2, đẳng cấp. [ads] 3/ Đặt ẩn phụ không hoàn toàn Đặt ẩn số phụ không hoàn toàn là một hình thức phân tích thành nhân tử. Khi đặt ẩn phụ t thì biến x vẫn tồn tại và ta xem x là tham số. Thông thường thì đó là phương trình bậc hai theo t (tham số x) và giải bằng cách lập Δ. Nói tóm lại : Ẩn phụ là phương pháp làm cho bài toán trở nên nhẹ nhàng hơn, những dạng phương trình đặc biệt kể trên chỉ mang tính chất giới thiệu ta không nên phụ thuộc quá nhiều vào các dạng đó mà xin nhớ rằng muốn phương pháp đạt hiệu quả cao thì điều quan trọng nhất là phân tích và tìm ra mối quan hệ tồn tại trong phương trình để từ đó đặt ẩn phụ một cách hợp lý và sáng tạo nhất.
Phương pháp cân bằng tích giải PT - BPT vô tỉ - Nguyễn Đại Dương
Tài liệu gồm 18 trang hướng dẫn sử dụng phương pháp cân bằng tích để giải một lớp các bài toán phương trình và bất phương trình vô tỷ. Tài liệu bao gồm các phần: + Cơ sở lí thuyết + Phương pháp chung + Các ví dụ + Bài tập vận dụng [ads] Các em phải biết học toán là phát triển tư duy, dù cho phương pháp có hay và dễ sử dụng đến mức nào nhưng người sử dụng không thể phát triển được nó thì cũng chỉ là học chay mà thôi. Hy vọng các em có thể nắm bắt bản chất để phát triển thêm nữa phương pháp này. Trong tài liệu tôi cố gắng sử dụng các ví dụ tiêu biểu cho từng bài toán riêng biệt, mỗi ví dụ là một kinh nghiệm cũng như một bài học. Đọc hết tài liệu các em sẽ có một cái nhìn tổng quát và đầy đủ về phương pháp này. Hiển nhiên trong bất kì tài liệu nào cũng sẽ có những thiếu sót, mong các em góp ý để tài liệu được hoàn thiện hơn cho các lứa học sinh sau.