Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 trường PTNK TP HCM

Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2021-2022 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2021-2022 trường PTNK TP HCM Ở đây, Sytu muốn đem đến cho các thầy cô giáo và các em học sinh lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (không chuyên) năm học 2021 - 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Ví dụ về một số câu hỏi trong đề tuyển sinh: Gọi (P), (d) lần lượt là đồ thị của hàm số y = x^2 và y = 2x + m. Tìm m sao cho (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2). Công ty viễn thông X có hai gói cước gọi điện hàng tháng được tính như sau. Bác An chọn gói cước II vì so với gói cước I, bác An sẽ tiết kiệm được 95.000 đồng. Hỏi một tháng trung bình bác An gọi bao nhiêu phút? Tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Vẽ phân giác BD của góc ABC (D thuộc cạnh AC). Tính độ dài BD. Đề tuyển sinh môn Toán không chuyên năm 2021-2022 trường PTNK TP HCM dành cho các em học sinh muốn thử sức và khẳng định năng lực của mình. Hy vọng rằng thông tin này sẽ hữu ích cho bạn trong quá trình ôn tập và chuẩn bị cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang là một bài thi khá thú vị và đầy thách thức. Được chia thành 5 bài toán tự luận, với lời giải chi tiết của thầy Nguyễn Chí Dũng, đề thi đòi hỏi sự tư duy logic và kiến thức chắc chắn của thí sinh. Trích một số bài toán trong đề: + Bài toán đầu tiên yêu cầu chứng minh tứ giác AHEC nội tiếp, chứng minh hai góc ABD và DBC bằng nhau, chứng minh tam giác ABE cân và chứng minh AKEF là hình thoi. + Bài toán thứ hai liên quan đến ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận, hỏi về khoảng cách mà một người quan sát có thể nhìn thấy trên mặt biển và cách xa nhìn thấy ngọn đèn từ tàu. Đề thi này không chỉ đánh giá kiến thức của thí sinh mà còn khuyến khích sự sáng tạo, tư duy logic và khả năng giải quyết vấn đề của họ. Các bài toán đều rất thú vị và đòi hỏi sự chú ý, cẩn thận trong việc giải quyết từng bước. Với đề thi này, thí sinh cần phải tự tin, kiên nhẫn và sẵn sàng đối mặt với thách thức để có thể hoàn thành tốt. Chính vì vậy, đề thi tuyển sinh môn Toán sở GD và ĐT An Giang năm học 2017-2018 là một bài kiểm tra thực sự ý nghĩa và hữu ích đối với thí sinh.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc bao gồm 5 bài toán tự luận, với lời giải chi tiết cụ thể giúp học sinh tự tin trong việc giải quyết các bài toán phức tạp. Đề thi được ra dành cho các học sinh có khả năng toán học ưu việt, để giúp định hình và phát triển năng khiếu toán học của học sinh từ sớm.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Lai Châu Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu bao gồm 5 bài toán tự luận với lời giải chi tiết. Đây là cơ hội cho học sinh thể hiện năng lực, kiến thức và kỹ năng giải toán một cách sâu sắc. Đề thi này giúp học sinh rèn luyện tư duy logic, khả năng phân tích và giải quyết vấn đề một cách chính xác và nhạy bén.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Quãng Ngãi Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi bao gồm 5 bài toán tự luận, với lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập kiến thức một cách hiệu quả. Dưới đây là một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy. Giả sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M, N, P, Q cùng thuộc một đường tròn. + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE. a. Chứng minh tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt, các số đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.