Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCĐ Toán 12 lần 1 năm 2018 - 2019 trường THPT Ngô Gia Tự - Vĩnh Phúc

Đề thi KSCĐ Toán 12 lần 1 năm 2018 – 2019 trường THPT Ngô Gia Tự – Vĩnh Phúc mã đề 134 gồm 6 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, yêu cầu thí sinh làm bài trong 90 phút, để hoàn thành được đề thi này, đòi hỏi các em học sinh lớp 12 phải ôn tập lại các kiến thức Toán 10, Toán 11 và kiến thức Toán 12 đã học, đề thi có đáp án. Trích dẫn đề thi KSCĐ Toán 12 lần 1 năm 2018 – 2019 trường THPT Ngô Gia Tự – Vĩnh Phúc : + Một bác nông dân cần xây dựng một hố ga không có nắp dạng hình hộp chữ nhật có thể tích 3200cm3, tỉ số giữa chiều cao của hố và chiều rộng của đáy bằng 2. Hãy xác định diện tích của đáy hố ga để khi xây tiết kiệm nguyên vật liệu nhất? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27√3/4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S? + Cho ba số a, b, c là ba số liên tiếp của một cấp số cộng có công sai là 2. Nếu tăng số thứ nhất thêm 1, tăng số thứ hai thêm 1 và tăng số thứ ba thêm 3 thì được ba số mới là ba số liên tiếp của một cấp số nhân. Tính (a + b + c).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2021 lần 3 trường chuyên Quang Trung - Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán THPTQG 2021 lần 3 trường THPT chuyên Quang Trung – Bình Phước; đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG 2021 lần 3 trường chuyên Quang Trung – Bình Phước : + Trong không gian Oxyz, cho đường thẳng d và hai điểm A(1;0;1), B(2;-1;1). Gọi M là điểm thuộc d sao cho P = MA + MB đạt giá trị nhỏ nhất, tính giá trị nhỏ nhất đó. + Cho mặt cầu (S) tâm O. Các điểm A, B, C thuộc mặt cầu sao cho AB = 3, AC = 4, BC = 5 và khoảng cách từ O đến mặt phẳng (ABC) bằng 3. Tính bán kính mặt cầu (S). + Trong không gian Oxyz, cho ba đường thẳng. Mặt phẳng (P) (với a, b là các số nguyên, a > 0) đi qua M(-2;3;-4) và cắt ba đường thẳng trên lần lượt tại ba điểm A, B, C sao cho tam giác ABC đều. Điểm nào sau đây thuộc mặt phẳng (P)?
Đề thi thử tốt nghiệp THPT 2021 môn Toán liên trường THPT - Hà Tĩnh
Thứ Năm ngày 03 tháng 06 năm 2021, một số trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Hà Tĩnh liên kết tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi thử tốt nghiệp THPT 2021 môn Toán liên trường THPT – Hà Tĩnh được biên soạn bám sát cấu trúc đề tham khảo TN THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán liên trường THPT – Hà Tĩnh : + Cho hàm số 3 2 yx x 3 3 có đồ thị (C). Gọi E là một điểm thuộc (C) sao cho tiếp tuyến của (C) tại E cắt (C) tại điểm thứ hai F và diện tích hình phẳng giới hạn bởi đường thẳng EF với (C) bằng 27 64. Tiếp tuyến của (C) tại F cắt (C) tại điểm thứ hai Q. Diện tích hình phẳng giới hạn bởi đường thẳng FQ với (C) bằng? + Cho khối lăng trụ đứng ABC A B C có đáy ABC là tam giác vuông cân tại C AB a 2 và góc tạo bởi hai mặt phẳng (ABC’) và (ABC) bằng 60°. Gọi M N lần lượt là trung điểm của A C và BC. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Thể tích của phần nhỏ bằng? + Trong không gian Oxyz, cho hai điểm E F (9;6;11) (5;7;2) và điểm M di động trên mặt cầu 2 22 Sx y z 1 2 3 36. Giá trị nhỏ nhất của ME MF 2 bằng?
Đề thi thử tốt nghiệp THPT năm 2021 môn Toán sở GDĐT Nam Định
Chiều thứ Sáu ngày 04 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021; kỳ thi được diễn ra theo hình thức thi trực tuyến (thi online) để đảm bảo an toàn phòng chống dịch bệnh Covid-19. Đề thi thử tốt nghiệp THPT năm 2021 môn Toán sở GD&ĐT Nam Định gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT năm 2021 môn Toán sở GD&ĐT Nam Định : + Trong mặt phẳng tọa độ Oxy xét đồ thị (P): y = 1 + x và đường thẳng d: x = a (với a > 0) cắt nhau tại điểm A (tham khảo hình vẽ bên dưới). Kí hiệu S là diện tích của hình phẳng giới hạn bởi các đường Oy, (P) và đường thẳng OA; S’ là diện tích hình phẳng giới hạn bởi các đường Oy, (P), Ox và d. Giả sử rằng S = 1/3.S’, hỏi giá trị a thuộc khoảng nào sau đây? + Xét các số phức z, w thỏa mãn 2 24 6 và 4 3 2 w 3 6i. Khi x đạt giá trị nhỏ nhất, hãy tính? + Trong không gian tọa độ Oxyz, cho hai mặt cầu (S1) và (S2) và điểm A. Gọi I là tâm của mặt cầu (S) và (P) là mặt phẳng tiếp xúc với cả hai mặt cầu (S1) và (S2). Xét các điểm M thay đổi và thuộc mặt phẳng (P) sao cho đường thẳng IM tiếp xúc với mặt cầu (S2). Khi đoạn thẳng AM ngắn nhất thì M = (a;b;c). Tính giá trị của T = a + b + c.
Đề thi thử tốt nghiệp THPT 2021 môn Toán trường THPT Đông Hà - Quảng Trị
Chiều thứ Năm ngày 03 tháng 06 năm 2021, trường THPT Đông Hà, thành phố Đông Hà, tỉnh Quảng Trị tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi thử tốt nghiệp THPT 2021 môn Toán trường THPT Đông Hà – Quảng Trị được biên soạn bám sát cấu trúc đề minh họa tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án mã đề 111 và 112. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán trường THPT Đông Hà – Quảng Trị : + Ông Nam xây dựng một sân bóng đá mini hình chữ nhật có chiều rộng 30m và chiều dài 50m. Để giảm bớt chi phí cho việc trồng cỏ nhân tạo, ông Nam chia sân bóng ra làm hai phần (tô đen và không tô đen) như hình vẽ bên dưới. Phần tô đen gồm hai miền diện tích bằng nhau và đường cong AIB là một parabol đỉnh I với khoảng cách từ I đến AB bằng 10m. Phần tô đen được trồng cỏ nhân tạo với giá 140000 đồng/m2 và phần còn lại được trồng cỏ nhân tạo với giá 100000 đồng/m2. Hỏi ông Nam phải trả bao nhiêu tiền để trồng cỏ nhân tạo cho sân bóng? + Trong không gian Oxyz, cho hai điểm A B 2 0 0 1 3 0 và M là điểm di động trên tia Oz (M không trùng với O). Gọi H K lần lượt là hình chiếu vuông góc của B lên MA và OA. Đường thẳng HK cắt trục Oz tại N. Khi thể tích tứ diện MNAB nhỏ nhất thì phương trình mặt phẳng (BHN) có dạng 2 0 x by cz d. Giá trị của b c d bằng? + Cho hàm số bậc bốn y f x có đồ thị là đường cong như hình vẽ bên dưới. Biết hàm số đạt cực trị tại ba điểm 1 2 3 x x x theo thứ tự lập thành một cấp số cộng có công sai bằng 3. Gọi 1 S là diện tích phần gạch chéo, 2 S là diện tích phần tô đậm. Tỉ số 1 2 S S bằng?