Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi vào lớp 10 môn Toán sở GDĐT thành phố Hà Nội (1988 - 2023)

Tài liệu gồm 89 trang, được tổng hợp bởi thầy giáo Bùi Quốc Hoàn, tuyển tập đề thi chính thức tuyển sinh vào lớp 10 (hệ phổ thông và hệ chuyên) môn Toán sở Giáo dục và Đào tạo thành phố Hà Nội (giai đoạn từ năm 1988 đến năm 2023). Mở đầu : Kính chào các thầy giáo, cô giáo và các bạn học sinh. Trên tay các thầy giáo, cô giáo và các bạn học sinh đang là tuyển tập các đề thi vào 10 hệ phổ thông và hệ chuyên của thành phố Hà Nội từ năm học 1988 – 1989 đến năm học 2022 – 2023 được soạn thảo theo chuẩn LATEX. Tài liệu được soạn thảo với sự hỗ trợ của nhóm Toán và LATEX. Đặc biệt với cấu trúc gói đề thi ex_test của tác giả Trần Anh Tuấn, Đại học Thương Mại. Quá trình biên tập dựa trên đề thi các thầy giáo, cô giáo chia sẻ trên mạng không tránh được sơ xuất do tài liệu gốc không rõ. Rất mong thầy giáo, cô giáo thông cảm. Để tài liệu hoàn thiện và đầy đủ hơn thầy giáo, cô giáo có đề trong tài liệu còn thiếu hoặc sai sót mong thầy giáo, cô giáo gửi về Emai: [email protected]. Trân trọng cảm ơn. Hà Nội, ngày 19 tháng 06 năm 2022 Tác giả. Bùi Quốc Hoàn. Mục lục : 1 ĐỀ THI VÀO HỆ PHỔ THÔNG 4. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1988 – 1989 5. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1989 – 1990 6. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1990 – 1991 7. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1991 – 1992 8. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1992 – 1993 9. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1993 – 1994 10. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 1994 – 1995 11. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 12. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 1995 – 1996 13. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 14. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 1996 – 1997 15. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 16. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 17. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 18. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 19. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 20. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 21. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 22. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 23. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 24. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 25. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 26. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 27. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 28. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 29. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 30. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 31. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 32. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 33. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 34. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 35. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 36. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 37. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 38. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 39. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 40. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 41. 2 ĐỀ THI VÀO HỆ CHUYÊN 42. 1 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 43. 2 Sở Giáo dục và Đào tạo Hà Nội năm học 1997 – 1998 44. 3 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 45. 4 Sở Giáo dục và Đào tạo Hà Nội năm học 1998 – 1999 46. 5 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 47. 6 Sở Giáo dục và Đào tạo Hà Nội năm học 1999 – 2000 48. 7 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 49. 8 Sở Giáo dục và Đào tạo Hà Nội năm học 2000 – 2001 50. 9 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 51. 10 Sở Giáo dục và Đào tạo Hà Nội năm học 2001 – 2002 52. 11 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 53. 12 Sở Giáo dục và Đào tạo Hà Nội năm học 2002 – 2003 54. 13 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 55. 14 Sở Giáo dục và Đào tạo Hà Nội năm học 2003 – 2004 56. 15 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 57. 16 Sở Giáo dục và Đào tạo Hà Nội năm học 2004 – 2005 58. 17 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 59. 18 Sở Giáo dục và Đào tạo Hà Nội năm học 2005 – 2006 60. 19 Sở Giáo dục và Đào tạo Hà Nội năm học 2006 – 2007 61. 20 Sở Giáo dục và Đào tạo Hà Nội năm học 2007 – 2008 62. 21 Sở Giáo dục và Đào tạo Hà Nội năm học 2008 – 2009 63. 22 Sở Giáo dục và Đào tạo Hà Nội năm học 2009 – 2010 64. 23 Sở Giáo dục và Đào tạo Hà Nội năm học 2010 – 2011 65. 24 Sở Giáo dục và Đào tạo Hà Nội năm học 2011 – 2012 66. 25 Sở Giáo dục và Đào tạo Hà Nội năm học 2012 – 2013 67. 26 Sở Giáo dục và Đào tạo Hà Nội năm học 2013 – 2014 68. 27 Sở Giáo dục và Đào tạo Hà Nội năm học 2014 – 2015 69. 28 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 70. 29 Sở Giáo dục và Đào tạo Hà Nội năm học 2015 – 2016 71. 30 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 72. 31 Sở Giáo dục và Đào tạo Hà Nội năm học 2016 – 2017 73. 32 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 74. 33 Sở Giáo dục và Đào tạo Hà Nội năm học 2017 – 2018 75. 34 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 76. 35 Sở Giáo dục và Đào tạo Hà Nội năm học 2018 – 2019 77. 36 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 78. 37 Sở Giáo dục và Đào tạo Hà Nội năm học 2019 – 2020 79. 38 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 80. 39 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 81. 40 Sở Giáo dục và Đào tạo Hà Nội năm học 2020 – 2021 82. 41 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 83. 42 Sở Giáo dục và Đào tạo Hà Nội năm học 2021 – 2022 84. 43 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 85. 44 Sở Giáo dục và Đào tạo Hà Nội năm học 2022 – 2023 86.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh chuyên năm 2019 2020 sở GD ĐT Đắk Lắk
Nội dung Đề Toán tuyển sinh chuyên năm 2019 2020 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2019 – 2020 sở GD ĐT Đắk Lắk Đề Toán tuyển sinh chuyên năm 2019 – 2020 sở GD ĐT Đắk Lắk Các thầy cô và các em học sinh thân mến, hôm nay Sytu xin giới thiệu đến quý vị đề thi chính thức môn Toán tuyển sinh vào lớp 10 trường chuyên năm học 2019 – 2020 sở GD&ĐT Đắk Lắk. Đề thi này được tổ chức nhằm tuyển chọn những tài năng có học lực môn Toán cao để học tại trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk. Đề Toán tuyển sinh lớp 10 chuyên năm 2019 – 2020 sở GD&ĐT Đắk Lắk bao gồm 1 trang với 5 bài toán được biên soạn theo dạng tự luận. Thời gian làm bài thi là 90 phút, kỳ thi diễn ra vào ngày 07 tháng 06 năm 2019. Đề thi đi kèm với lời giải chi tiết để học sinh có thể tự kiểm tra kết quả của mình. Một số câu hỏi đáng chú ý trong đề Toán tuyển sinh này bao gồm: Phân tích về tam giác và hình vuông để chứng minh các định lí liên quan. Giải phương trình và tính toán các giá trị tham số để tìm ra nghiệm thích hợp. Tính toán và áp dụng kiến thức đã học để giải quyết vấn đề. Chúc quý thầy cô và các em học sinh sẽ có kết quả tốt trong kỳ thi này và tiếp tục phát huy tố chất Toán học của mình. Hy vọng rằng đề Toán tuyển sinh lớp 10 chuyên năm 2019 – 2020 sở GD&ĐT Đắk Lắk sẽ là bước đệm quan trọng cho sự thành công trong tương lai của các em.
Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Thanh Hóa
Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Thanh Hóa Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Thanh Hóa Sytu xin giới thiệu đến các bạn đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Thanh Hóa. Đề thi được biên soạn theo dạng đề tự luận với 5 bài toán, đề thi gồm 01 trang và học sinh có thời gian làm bài trong 120 phút (2 tiếng đồng hồ). Đề thi cũng có lời giải chi tiết để học sinh có thể tự kiểm tra và ôn tập sau khi làm bài. Trích dẫn một số câu hỏi trong đề Toán: + Từ một điểm A nằm ngoài đường tròn tâm O bán kính R, kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ khác B và C. Gọi I, K, P lần lượt là hình chiếu vuông góc của điểm M trên các đường thẳng AB, AC, BC. Hãy chứng minh rằng tứ giác AIMK là tứ giác nội tiếp. + Cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) song song với đường thẳng y = 5x + 6 và đi qua điểm A(2;3). + Phương trình x^2 - 2(m - 1)x + 2m - 5 = 0 (m là tham số). Hãy chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m. Đây là một số câu hỏi trong đề thi Toán năm 2019 - 2020 của sở GD&ĐT Thanh Hóa. Hy vọng rằng các em sẽ thực sự thử thách và ôn tập kiến thức một cách hiệu quả khi giải các bài toán này.
Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Đề tuyển sinh vào năm 2019 2020 môn Toán sở GD ĐT Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán sở GD&ĐT Nghệ An. Đề thi được biên soạn theo dạng tự luận, với cấu trúc tương tự các năm học trước. Đề thi bao gồm 5 bài toán, thời gian làm bài là 120 phút. Trích đề thi chính thức tuyển sinh vào lớp 10 năm 2019 – 2020 môn Toán sở GD&ĐT Nghệ An: 1. Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC). a) Chứng minh BOMH là tứ giác nội tiếp. b) MB cắt OH tại E. Chứng minh ME.HM = BE.HC. c) Gọi giao điểm của đường tròn (O) và đường tròn ngoại tiếp tam giác MHC là K. Chứng minh ba điểm C, K, E thẳng hàng. 2. Tình cảm gia đình có sức mạnh thật phi thường. Bạn Vi Quyết Chiến – Cậu bé 13 tuổi quá thương nhớ em trai của mình đã vượt qua một quãng đường dài 180 km từ Sơn La đến bệnh viện nhi Trung ương Hà Nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, bạn ấy được lên xe khách và đi tiếp 1 giờ 30 phút nữa thì đến nơi. Biết vận tốc của xe khách lớn hơn vận tốc của xe đạp là 35 km/giờ. Tính vận tốc xe đạp của bạn Chiến. 3. Xác định hàm số bậc nhất y = ax + b biết rằng đồ thị của hàm số đi qua hai điểm M(1;-1) và N(2;1).
Đề tuyển sinh chuyên năm 2019 2020 môn Toán sở GD ĐT Gia Lai
Nội dung Đề tuyển sinh chuyên năm 2019 2020 môn Toán sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Gia Lai Đề thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Gia Lai Xin chào các thầy cô và các bạn học sinh! Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 chuyên năm học 2019 – 2020 môn Toán sở GD&ĐT Gia Lai. Đề thi này dành cho các bạn học sinh đăng ký học các lớp không chuyên tại các trường THPT chuyên trực thuộc sở GD&ĐT Gia Lai. Đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai bao gồm 1 trang với 5 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2019 – 2020 môn Toán sở GD&ĐT Gia Lai: Cho phương trình \(x^2 + 2(m - 2)x + m^2 - 3m - 1 = 0\), với m là tham số. a) Giải phương trình đã cho khi m = 1. b) Xác định giá trị của m để phương trình đã cho có hai nghiệm phân biệt \(x_1, x_2\) sao cho \(x_1^2 – x_1x_2 + x_2^2 = 9\). Quãng đường AB dài 180 km. Hai ô tô cùng khởi hành từ A đến B. Mỗi giờ ô tô thứ nhất chạy nhanh hơn 10 km so với ô tô thứ hai, nên ô tô thứ nhất đến B trước ô tô thứ hai 36 phút. Hãy tính vận tốc trung bình của mỗi ô tô. Cho đường tròn (O) và điểm A nằm ngoài (O). Đường thẳng AC cắt đường tròn (O) tại hai điểm B và C (AB < AC). Qua A vẽ một đường thẳng không đi qua điểm O, cắt đường tròn (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AC tại A cắt đường thẳng CE tại F. a) Chứng minh tứ giác ABEF nội tiếp đường tròn. b) Gọi M là giao điểm của đường thẳng FB và đường tròn (O) (M khác B). Chứng minh AC là đường trung trực của đoạn thẳng DM. c) Chứng minh \(CE \cdot CF + AD \cdot AE = AC^2\).