Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 1)

Tài liệu gồm 208 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 1. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 1): PHẦN I . ĐẠI SỐ Chương 1 . Căn bậc hai, căn bậc ba. 1. Căn bậc hai. A. Tóm tắt lý thuyết. 1. Căn bậc hai của một số. 2. So sánh các căn bậc hai số học. B. Phương pháp giải toán. 2. Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Phá dấu trị tuyệt đối. 2. Điều kiện để √A có nghĩa. 3. Sử dụng hằng đẳng thức √A^2 = |A|. 4. Phương trình – bất phương trình. C. Bài tập tự luyện. 3. Liên hệ giữa phép nhân và phép khai phương. A. Tóm tắt lí thuyết. 1. Định lí. 2. Khai phương một tích. 3. Nhân các căn thức bậc hai. B. Các dạng toán. C. Bài tập tự luyện. 4. Liên hệ giữa phép chia và phép khai phương. A. Tóm tắt lí thuyết. B. Dạng toán. 1. Khai phương một thương. 2. Chia hai căn thức bậc hai. C. Phương pháp giải toán. D. Bài tập tự luyện. 5. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. A. Tóm tắt lí thuyết. 1. Đưa một thừa số ra ngoài dấu căn. 2. Đưa một thừa số vào trong dấu căn. 3. Khử mẫu của biểu thức lấy dấu căn. 4. Trục căn thức ở mẫu. B. Các dạng toán. 1. Đưa một thừa số vào trong hoặc ra ngoài dấu căn. 2. Khử mẫu của biểu thức dưới dấu căn – phép nhân liên hợp. 3. Sử dụng các phép biến đổi căn thức bậc hai cho bài toán rút gọn và chứng minh đẳng thức. 4. Sử dụng các phép biến đổi căn thức bậc hai giải phương trình. C. Bài tập tự luyện. 6. Rút gọn biểu thức có chứa căn bậc hai. A. Tóm tắt lí thuyết. B. Các dạng toán. 1. Thực hiện phép tính rút gọn biểu thức có chứa căn bậc hai. 2. Giải phương trình. C. Bài tập tự luyện. 7. Căn bậc ba – căn bậc n. A. Tóm tắt lí thuyết. 1. Căn bậc ba. B. Phương pháp giải toán. 1. Thực hiện các phép tính với căn bậc 3 và bậc n. 2. Khử mẫu chứa căn bậc ba. 3. Giải phương trình chứa căn bậc ba. C. Bài tập tự luyện. Chương 2 . Hàm số bậc nhất. 1. Nhắc lại và bổ sung khái niệm về hàm số. A. Tóm tắt lí thuyết. 1. Khái niệm hàm số và đồ thị. 2. Tập xác định của hàm số. 3. Hàm số đồng biến, nghịch biến. B. Các dạng toán. 1. Sự xác định của một hàm số. 2. Tìm tập xác định của hàm số. 3. Xét tính chất biến thiên của hàm số. C. Bài tập tự luyện. 2. Hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Định nghĩa. B. Phương pháp giải toán. C. Bài tập luyện tập. 3. Đồ thị của hàm số bậc nhất. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số y = ax với a khác 0. 2. Đồ thị của hàm số y = ax + b với a khác 0. 3. Cách vẽ đồ thị hàm số bậc nhất. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Đường thẳng song song và đường thẳng cắt nhau. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Hệ số góc của đường thẳng. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. 1. Hệ số góc của đường thẳng. 2. Lập phương trình đường thẳng biết hệ số góc. C. Bài tập tự luyện. [ads] PHẦN II . HÌNH HỌC Chương 1 . Hệ thức lượng trong tam giác vuông. 1. Một số hệ thức về cạnh và đường cao của tam giác vuông. A. Tóm tắt lí thuyết. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. 2. Một số hệ thức liên quan tới đường cao. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. 2. Tỉ số lượng giác. A. Tóm tắt lí thuyết. 1. Tỉ số lượng giác. 2. Giá trị lượng giác của các cung đặc biệt. 3. Hàm số lượng giác của hai góc phụ nhau. B. Phương pháp giải toán. 1. Giải các bài toán định lượng. 2. Giải các bài toán định tính. C. Bài tập tự luyện. Chương 2 . Đường tròn. 1. Sự xác định đường tròn – tính chất đối xứng của đường tròn. A. Tóm tắt lí thuyết. 1. Nhắc lại về đường tròn. 2. Cách xác định đường tròn. 3. Tâm đối xứng – trục đối xứng. B. Các dạng toán. 1. Chứng minh nhiều điểm cùng nằm trên một đường tròn. 2. Quỹ tích điểm là một đường tròn. 3. Dựng đường tròn. C. Bài tập tự luyện. 2. Đường kính và dây cung của đường tròn. A. Tóm tắt lí thuyết. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. B. Phương pháp giải toán. 1. Giải bài toán định tính và định lượng. 2. Giải bài toán dựng hình. 3. Giải bài toán quỹ tích. C. Bài tập rèn luyện. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. A. Tóm tắt lí thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 4. Vị trí tương đối của đường thẳng và đường tròn. A. Tóm tắt lý thuyết. B. Phương pháp giải toán. C. Bài tập luyện tập. 5. Tiếp tuyến của đường tròn. A. Tóm tắt lý thuyết. 1. Các tính chất của tiếp tuyến. B. Phương pháp giải toán. 1. Dựng tiếp tuyến của đường tròn. 2. Giải bài toán định tính và định lượng. 3. Chứng minh một đường thẳng là tiếp tuyến của đường tròn. 4. Sử dụng tính chất tiếp tuyến để tìm quỹ tích. C. Bài tập tự luyện. 6. Tính chất của hai tiếp tuyến cắt nhau. A. Tóm tắt lý thuyết. 1. Đường tròn nội tiếp tam giác. 2. Đường tròn bàng tiếp tam giác. B. Phương pháp giải toán. C. Bài tập luyện tập. D. Hướng dẫn – đáp số. 7. Vị trí tương đối của hai đường tròn. A. Tóm tắt lý thuyết. 1. Hai đường tròn có hai điểm chung. 2. Hai đường tròn chỉ có một điểm chung. 3. Hai đường tròn không có điểm chung. 4. Một số tính chất. B. Phương pháp giải toán. C. Bài tập luyện tập.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải bài toán bằng cách lập phương trình
Nội dung Chuyên đề giải bài toán bằng cách lập phương trình Bản PDF - Nội dung bài viết Chuyên đề giải bài toán bằng cách lập phương trình Chuyên đề giải bài toán bằng cách lập phương trình Tài liệu "Chuyên đề giải bài toán bằng cách lập phương trình" có tổng cộng 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu này tổng hợp kiến thức trọng tâm, phân loại và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải bài toán bằng cách lập phương trình, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 8. I. TÓM TẮT LÝ THUYẾT: Các bước giải bài toán bằng cách lập phương trình: Bước 1: Lập phương trình: Chọn ẩn số và đặt điều kiện cho ẩn số. Biểu diễn các điều kiện chưa biết qua ẩn số. Lập phương trình biểu thị tương quan giữa ẩn số và các điều kiện đã biết. Bước 2: Giải phương trình. Bước 3: Đối chiếu nghiệm của phương trình với điều kiện của ẩn số và với đề bài để đưa ra kết luận. II. BÀI TẬP VÀ CÁC DẠNG TOÁN: Tài liệu cung cấp một số dạng bài tập như: Bài toán về năng suất lao động. Toán về công việc làm chung, làm riêng. Toán về quan hệ các số. Toán có nội dung hình học. Toán về chuyển động và chuyển động trên dòng nước. Và nhiều dạng bài tập khác. III. BÀI TẬP VỀ NHÀ: Tài liệu còn cung cấp bài tập để học sinh tự rèn luyện kỹ năng giải bài toán bằng cách lập phương trình tại nhà. NÂNG CAO – PHÁT TRIỂN TƯ DUY: Để nâng cao khả năng giải bài toán, học sinh cần phải rèn luyện và phát triển tư duy toán học thông qua các bài tập khó hơn. TRẮC NGHIỆM RÈN PHẢN XẠ: Tài liệu cung cấp các bài tập trắc nghiệm để học sinh rèn luyện tính nhanh nhạy, linh hoạt khi giải bài toán bằng cách lập phương trình. PHIẾU BÀI TẬP TỰ LUYỆN: Để tự kiểm tra kiến thức và kỹ năng, tài liệu cung cấp phiếu bài tập tự luyện để học sinh tự mình ôn tập và làm bài tập thêm.
Chuyên đề phương trình quy về phương trình bậc hai
Nội dung Chuyên đề phương trình quy về phương trình bậc hai Bản PDF - Nội dung bài viết Chuyên đề phương trình bậc hai: Tài liệu học tập toàn diện Chuyên đề phương trình bậc hai: Tài liệu học tập toàn diện Tài liệu Chuyên đề phương trình quy về phương trình bậc hai, được biên soạn bởi tác giả Toán Học Sơ Đồ, là một nguồn kiến thức vô cùng hữu ích cho học sinh. Với 39 trang sách, tài liệu tổng hợp các kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm. Đây là nguồn tư liệu quý giá để hỗ trợ học sinh trong quá trình nắm vững chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT: I. TÓM TẮT LÝ THUYẾT: 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN: Dạng 1. Giải phương trình trùng phương: + Bước 1: Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai. + Bước 2: Giải phương trình bậc hai ẩn t để tìm nghiệm của phương trình trùng phương. Dạng 2. Phương trình chứa ẩn ở mẫu thức: + Bước 1: Tìm điều kiện xác định của ẩn. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình bậc hai nhận được ở bước 2. Dạng 3. Phương trình đưa về dạng tích: + Bước 1: Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4. Giải phương trình bằng phương pháp đặt ẩn phụ: + Bước 1: Đặt điều kiện xác định (nếu có). + Bước 2: Đặt ẩn phụ và giải phương trình theo ẩn mới. + Bước 3: So sánh nghiệm tìm được với điều kiện xác định và kết luận. Dạng 5. Phương trình chứa biểu thức trong dấu căn: Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6. Một số dạng khác: Không chỉ giới hạn trong các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế để giải phương trình. III. BÀI TẬP VỂ NHÀ: Tài liệu cũng cung cấp bài tập cho học sinh để rèn luyện và nâng cao kiến thức sau giờ học. B. NÂNG CAO PHÁT TRIỂN TƯ DUY: Để giúp học sinh phát triển tư duy, tài liệu cung cấp phần bài tập nâng cao để đề cao khả năng logic và suy luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ: Phần này giúp học sinh củng cố kiến thức thông qua các câu hỏi trắc nghiệm, rèn luyện khả năng phản xạ nhanh nhạy. D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO: Để hỗ trợ học sinh tự học, tài liệu cung cấp phiếu bài tập cơ bản và nâng cao để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình.
Chuyên đề hệ thức Vi-ét và ứng dụng
Nội dung Chuyên đề hệ thức Vi-ét và ứng dụng Bản PDF - Nội dung bài viết Chuyên đề hệ thức Vi-ét và ứng dụng Chuyên đề hệ thức Vi-ét và ứng dụng Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, là một công cụ hữu ích hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 6. Tài liệu gồm 57 trang, tổng hợp kiến thức trọng tâm về hệ thức Vi-ét và các ứng dụng của nó. Trọng tâm cần đạt của tài liệu bao gồm: Tóm tắt lý thuyết: Bao gồm hệ thức Vi-ét và ứng dụng của nó trong giải các bài toán. Bài tập và các dạng toán: Cung cấp hướng dẫn giải từ những dạng cơ bản như tính giá trị của biểu thức đối xứng giữa các nghiệm đến các dạng phức tạp hơn như xác định điều kiện của tham số để phương trình có nghiệm thỏa mãn hệ thức cho trước. Bên cạnh đó, tài liệu cũng cung cấp các phần: Bài tập về nhà: Để học sinh tự ôn tập và củng cố kiến thức. Nâng cao phát triển tư duy: Để học sinh rèn luyện tư duy logic và phân tích toán học. Trắc nghiệm rèn luyện phản xạ: Giúp học sinh nâng cao khả năng giải toán nhanh chóng. Phiếu bài tập tự luyện: Bao gồm các dạng bài tập từ cơ bản đến phức tạp để học sinh tự rèn luyện kỹ năng giải toán. Qua tài liệu này, học sinh sẽ có cơ hội nắm vững kiến thức về hệ thức Vi-ét và ứng dụng của nó trong giải các bài toán Đại số, từ đó nâng cao khả năng giải toán và tư duy logic toán học của mình.
Chuyên đề công thức nghiệm của phương trình bậc hai
Nội dung Chuyên đề công thức nghiệm của phương trình bậc hai Bản PDF - Nội dung bài viết Chuyên đề công thức nghiệm của phương trình bậc hai Chuyên đề công thức nghiệm của phương trình bậc hai Tài liệu này bao gồm 28 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức quan trọng về phương trình bậc hai, bao gồm công thức nghiệm và cách giải các dạng bài tập tự luận & trắc nghiệm chuyên đề này. Được tạo ra nhằm hỗ trợ học sinh trong quá trình học chương trình Đại số 9 chương 4 bài số 4. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình bậc hai một ẩn. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn của phương trình bậc hai. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Không dùng công thức nghiệm, giải phương trình bậc hai một ẩn cho trước. Dạng 2. Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn. Dạng 3. Sử dụng công thức nghiệm, xác định số nghiệm của phương trình dạng bậc hai. Dạng 4. Giải và biện luận phương trình dạng bậc hai. Dạng 5. Một số bài toán liên quan đến tính có nghiệm của phương trình bậc hai; nghiệm chung của các phương trình dạng bậc hai; hai phương trình dạng bậc hai tương đương. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN