Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phân số Toán 6 Kết Nối Tri Thức Với Cuộc Sống

Tài liệu gồm 180 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bỉnh Khôi, phân dạng và tuyển chọn các bài tập chuyên đề phân số trong chương trình môn Toán 6 bộ sách Kết Nối Tri Thức Với Cuộc Sống. Chương 6 . Phân số 1. Bài số 23 . Mở rộng khái niệm phân số. Phân số bằng nhau 1. A Kiến thức cần nhớ 1. B Kĩ năng giải toán 1. + Dạng 1. Nhận biết phân số, viết phân số 1. + Dạng 2. Biểu thị các số đo (độ dài, diện tích, …) dưới dạng phân số với đơn vị cho trước 3. + Dạng 3. Viết tập hợp các số nguyên thỏa mãn các điều kiện liên quan đến phân số 4. + Dạng 4. Tìm điều kiện để biểu thức A/B là một phân số 5. + Dạng 5. Tìm điều kiện để một biểu thức phân số có giá trị là một số nguyên 6. + Dạng 6. Nhận biết các cặp phân số bằng nhau 7. + Dạng 7. Chuyển một phân số có mẫu âm thành một phân số bằng nó có mẫu dương 8. + Dạng 8. Lập các cặp phân số bằng nhau từ đẳng thức cho trước 8. + Dạng 9. Tìm số nguyên chưa biết thỏa mãn điều kiện bằng nhau của phân số 10. + Dạng 10. Chuyển một phân số có mẫu âm thành một phân số bằng nó có mẫu dương 13. + Dạng 11. Điền số thích hợp vào chỗ trống 13. + Dạng 12. Nhận biết các cặp phân số bằng nhau 15. + Dạng 13. Viết các phân số bằng với một phân số cho trước 16. + Dạng 14. Giải thích sự bằng nhau của các phân số 17. + Dạng 15. Nhận biết phân số tối giản 17. + Dạng 16. Rút gọn phân số 18. + Dạng 17. Chọn ra các phân số bằng nhau 21. + Dạng 18. Biểu thị các số đo (độ dài, diện tích, …) dưới dạng phân số với số đo cho trước 22. + Dạng 19. Tìm các phân số bằng với phân số đã cho 23. C Bài tập 24. 1. Bài tập rèn luyện 25. 2. Bài tập bổ sung 32. 3. Bài tập trắc nghiệm 35. Bài số 24 . So sánh phân số. Hỗn số dương 38. A Kiến thức cần nhớ 38. B Kĩ năng giải toán 38. + Dạng 1. Tìm mẫu chung nhỏ nhất của các phân số 38. + Dạng 2. Viết các phân số dưới dạng phân số có mẫu dương cho trước 40. + Dạng 3. Quy đồng mẫu số các phân số 41. + Dạng 4. So sánh các phân số đưa được về cùng mẫu 44. + Dạng 5. So sánh các phân số không cùng mẫu 44. + Dạng 6. So sánh hai đại lượng cùng loại (thời gian, khối lượng, độ dài, …) 46. + Dạng 7. Bài toán có lời văn 47. + Dạng 8. Viết phân số dưới dạng hỗn số và ngược lại 47. C Bài tập 48. 1. Bài tập rèn luyện 48. 2. Bài tập bổ sung 53. 3. Bài tập trắc nghiệm 55. Luyện tập chung 58. A Mở rộng khái niệm phân số. Phân số bằng nhau 58. 1. BÀI TẬP 63. 2. BÀI TẬP 67. B So sánh phân số. Hốn số dương 69. Bài số 25 . Phép cộng và phép trừ phân số 76. A Kiến thức cần nhớ 76. B Kĩ năng giải toán 76. + Dạng 1. Thực hiện phép cộng phân số 76. + Dạng 2. Điều dấu thích hợp (<, >, =) vào chỗ trống 77. + Dạng 3. Tìm số chưa biết trong một đẳng thức 78. + Dạng 4. Tính nhanh tổng của nhiều phân số 79. + Dạng 5. Cộng hai phân số 82. + Dạng 6. Bài toán có lời văn 83. + Dạng 7. Tìm số chưa biết 84. + Dạng 8. Tìm số đối của phân số 84. + Dạng 9. Trừ các phân số 85. + Dạng 10. Tìm số chưa biết 87. + Dạng 11. Bài toán có lời văn 88. + Dạng 12. Tính tổng của dãy các phân số theo quy luật 89. C Bài tập 90. 1. Bài tập rèn luyện 90. 2. Bài tập bổ sung 95. 3. Bài tập trắc nghiệm 100. D CÂU HỎI TRẮC NGHIỆM 102. Bài số 26 . Phép nhân và phép chia phân số 110. A Kiến thức cần nhớ 110. B Kĩ năng giải toán 110. + Dạng 1. Thực hiện phép nhân phân số 110. + Dạng 2. Viết một phân số dưới dạng tích của hai phân số thỏa mãn điều kiện cho trước 111. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép nhân phân số 111. + Dạng 4. Thực hiện phép nhân phân số 112. + Dạng 5. Tính giá trị của biểu thức 114. + Dạng 6. Bài toán có lời văn 116. + Dạng 7. Tìm nghịch đảo của một số cho trước 117. + Dạng 8. Thực hiện phép chia phân số 118. + Dạng 9. Thực hiện phép chia phân số 119. + Dạng 10. Tình số chưa biết trong một đẳng thức có chứa phép nhân phân số 120. + Dạng 11. Bài toán có lời văn 120. + Dạng 12. Tính giá trị của biểu thức 121. C Bài tập 122. 1. Bài tập rèn luyện 122. 2. Bài tập trắc nghiệm 126. Bài số 27 . Hai bài toán về phân số 131. A Kiến thức cần nhớ 131. B Kĩ năng giải toán 131. + Dạng 1. Tìm giá trị phân số của một số cho trước 131. + Dạng 2. Bài toán có lời văn 132. + Dạng 3. Tìm một số biết giá trị một phân số của nó 133. + Dạng 4. Bài toán có lời văn 133. C Bài tập 134. 1. Bài tập rèn luyện 134. 2. Bài tập bổ sung 136. 3. Bài tập trắc nghiệm 138. Luyện tập chung 141. A Phép cộng và phép trừ phân số 141. B Phép nhân và phép chia phân số 143. C Hai bài toán về phân số 145. Ôn tập chương VI 151. A Kiến thức cần nhớ 151. B Câu hỏi trắc nghiệm 152. C Bài tập 153. 1. Bài tập rèn luyện 153. 2. Bài tập bổ sung 158. 3. Bài tập về nhà 164. D Đề kiểm tra cuối chương 167. 1. Đề số 1 167. 2. Đề số 2 169. Bài số 28 . Ôn tập chương VII 171. Ôn tập chương VII 171. A Kiến thức trọng tâm 171. B Câu hỏi trắc nghiệm 171. C Bài tập 173. 1. Bài tập rèn luyện 173. 2. Bài tập bổ sung 177.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề ước chung và ước chung lớn nhất
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước chung và ước chung lớn nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức : + Hiểu được khái niệm ước chung, ước chung lớn nhất, và khái niệm các số nguyên tố cùng nhau. + Nhận biết được giao của hai tập hợp. + Nhận biết được quan hệ giữa ước chung và ước chung lớn nhất. Kĩ năng : + Xác định được ước chung và ước chung lớn nhất của hai hay nhiều số tự nhiên lớn hơn 1. + Biết cách tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố. + Tìm được tập hợp các ước chung của các số đã cho thông qua tìm ước chung lớn nhất của chúng. + Vận dụng giải các dạng toán tìm ước chung và ước chung lớn nhất. + Chứng minh được hai hay nhiều số nguyên tố cùng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Tìm ước chung. Tìm ước chung của hai số a và b: + Bước 1. + Bước 2. Dạng 2 : Tìm ước chung lớn nhất. Tìm ước chung lớn nhất của hai số a và b: – Cách 1: Tìm ƯC(a;b), chọn số lớn nhất trong tập hợp đó. – Cách 2: + Bước 1. Phân tích a và b ra thừa số nguyên tố. + Bước 2. Chọn ra các thừa số nguyên tố chung. + Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN cần tìm. Tìm ƯC(a;b) thông qua ước chung lớn nhất: + Bước 1. Tìm ƯCLN(a;b). + Bước 2. Liệt kê các ước của ƯCLN. Dạng 3 : Bài toán về tập hợp. Giao của hai tập hợp A và B là một tập hợp gồm các phần tử chung của hai tập đó. Dạng 4 : Chứng minh hai hay nhiều số là các số nguyên tố cùng nhau. Chứng minh a và b là hai số nguyên tố cùng nhau: + Bước 1. Giả sử d = ƯC(a;b). Suy ra a d và b d. + Bước 2. Áp dụng tính chất chia hết của một tổng (hiệu) để chứng minh d = 1. Suy ra ƯCLN(a;b) = 1. Kết luận a và b là hai số nguyên tố cùng nhau.
Chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ước và bội, số nguyên tố và hợp số, phân tích một số ra thừa số nguyên tố, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Nhận biết được khái niệm ước, bội, số nguyên tố và hợp số. + Nắm được cách phân tích một số ra thừa số nguyên tố. Kĩ năng: + Phân tích được một số tự nhiên bất kì ra thừa số nguyên tố, biết dùng lũy thừa để viết gọn dạng phân tích. + Biết cách xác định tập hợp các ước, các bội của một số tự nhiên. + Nhận biết được một số hoặc một biểu thức là số nguyên tố hay hợp số. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Bài toán về ước và bội. + Cách tìm bội của a (a khác 0): Lấy a nhân lần lượt với 0; 1; 2; 3; …. + Cách tìm ước của b (b > 1): Lấy b chia cho các số tự nhiên từ 1 đến b để xét xem b chia hết cho những số nào rồi kết luận. Dạng 2 : Số nguyên tố và hợp số. Dạng 3 : Phân tích một số ra thừa số nguyên tố.
Chuyên đề tính chất chia hết của một tổng, dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9
Tài liệu gồm 19 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất chia hết của một tổng, dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu quan hệ chia hết, các tính chất chia hết của một tổng, một hiệu. + Nắm được các dấu hiệu chia hết cho 2, cho 3, cho 5 và cho 9. Kĩ năng: + Nhận biết được một biểu thức có chia hết cho một số mà không cần tính giá trị của biểu thức đó. + Sử dụng đúng các kí hiệu chia hết và không chia hết. + Vận dụng thành thạo các dấu hiệu chia hết cho 2, cho 3, cho 5 và cho 9 để xác định một số đã cho có chia hết cho 2, cho 3, cho 5 và cho 9 hay không. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xét tính chia hết hay không chia hết. + Sử dụng dấu hiệu chia hết cho 2, cho 5, cho 3 và cho 9. + Sử dụng tính chất chia hết của tổng, của hiệu. Dạng 2 : Lập các số thỏa mãn điều kiện chia hết từ các số cho trước. + Lập số chia hết cho 2, cần chọn chữ số ở hàng đơn vị là số chẵn (0; 2; 4; 6 hoặc 8). + Lập số chia hết cho 5, cần chọn chữ số ở hàng đơn vị là 0 hoặc 5. + Lập số chia hết cho 3, cần chọn các chữ số sao cho tổng của chúng chia hết cho 3. + Lập số chia hết cho 9, cần chọn các chữ số sao cho tổng của chúng chia hết cho 9. Dạng 3 : Tìm điều kiện để một số chia hết cho một số nào đó. Sử dụng các dấu hiệu chia hết cho 2, cho 3, cho 5, cho 9 và tính chất chia hết của một tổng. Dạng 4 : Chứng minh tính chất chia hết. Cần lưu ý: + Hai số tự nhiên liên tiếp. + Ba số tự nhiên liên tiếp. + Số chẵn. + Số lẻ. + Cấu tạo số.
Chuyên đề phép nhân và phép chia hai lũy thừa cùng cơ số
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề phép nhân và phép chia hai lũy thừa cùng cơ số, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Hiểu định nghĩa lũy thừa, phân biệt được cơ số và số mũ. + Hiểu được quy tắc nhân và chia hai lũy thừa cùng cơ số. + Hiểu được khái niệm số chính phương. Kĩ năng: + Thực hiện được các phép tính lũy thừa. + Biết cách viết gọn một biểu thức dưới dạng lũy thừa. + So sánh được các lũy thừa. + Biết biểu diễn một số tự nhiên bất kì dưới dạng tổng các lũy thừa của 10. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Viêt gọn một biểu thức dưới dạng lũy thừa. Dạng 2 : Tính giá trị của biểu thức. Dạng 3 : Tìm cơ số hoặc số mũ của một lũy thừa. + Đưa về cùng cơ số. + Đưa về cùng số mũ. Dạng 4 : So sánh các số viết dưới dạng lũy thừa. Để so sánh các số viết dưới dạng lũy thừa, ta có thể làm theo một trong ba cách sau: + Cách 1. Tính cụ thể rồi so sánh. + Cách 2. Đưa về cùng cơ số là số tự nhiên, rồi so sánh hai số mũ: Nếu m > n thì a^m > a^n. + Cách 3. Đưa về cùng số mũ, rồi so sánh hai cơ số: Nếu a > b thì a^m > b^m. Dạng 5 : Tìm chữ số tận cùng của số có dạng lũy thừa. Chữ số tận cùng của n a chính là chữ số tận cùng của n x (với x là chữ số tận cùng của a). Các số có tận cùng là 0; 1; 5; 6 khi nâng lên lũy thừa bất kì (khác 0) cũng có chữ số tận cùng là 0; 1; 5; 6. Các số có tận cùng là 4; 9 khi nâng lên lũy thừa lẻ thì chữ số tận cùng không thay đổi, khi nâng lên lũy thừa chẵn thì có chữ số tận cùng lần lượt là 6; 1.