Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 9 vòng 1 năm 2022 - 2023 liên trường THCS huyện Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An : + Đa thức f(x) khi chia cho x – 5 được số dư là 14 và khi chia cho x + 1 được số dư là 2. Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x2 – 4x – 5. + Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: EF BC A cos b) Gọi I là trung điểm cua AH, M là trung điểm của BC, K là giao điểm của EF và IM. Chứng minh rằng: 2 AH 4 IK IM. + Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Chứng minh rằng, khi đường thẳng d thay đổi (cắt các cạnh AB, AC) thì tổng AB AC AD AE có giá trị không đổi.
Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 tháng 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GD&ĐT Chí Linh – Hải Dương : + Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). + Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. + Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. a) Tính DE3/BD.CE theo R. b) Tính: AI/HB + AI/HC. c) Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất.
Đề khảo sát đội tuyển HSG Toán 9 năm 2022 - 2023 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 09 năm 2022. Trích dẫn đề khảo sát đội tuyển HSG Toán 9 năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). + Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Điểm C di động trên nửa đường tròn(C khác A và B). Kẻ CH vuông góc AB (H thuộc AB). Tia phân giác của các góc CAB và CBA cắt nhau tại I và cắt các cạnh đối diện lần lượt tại E và F. Tia phân giác của góc CHA cắt AE tại J, tia phân giác của góc CHB cắt BF tại K. Đường thẳng JK cắt CA, CB lần lượt tại M, N. 1. Chứng minh tam giác HJK đồng dạng tam giác CAB. 2. Chứng minh: CI = JK. 3. Xác định vị trí của C trên nửa đường tròn để JK có độ dài lớn nhất.
Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán cấp quận năm 2022 – 2023 phòng GD&ĐT Đống Đa – Hà Nội : + Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Tìm n là số tự nhiên sao cho 2^n – 1 chia hết cho 7. + Trên bảng viết 100 phân số. Ta thực hiện trò chơi như sau: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, nhưng lại viết thêm số (a − b + ab). Sau một số lần thực hiện quy tắc trên thì trên bảng còn lại đúng một số, chứng minh rằng đó là số tự nhiên.