Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm 2020 - 2021 trường chuyên Lê Hồng Phong - TP HCM

Thứ Tư ngày 16 tháng 12 năm 2020, trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng cuối học kỳ 1 môn Toán lớp 11 năm học 2020 – 2021. Đề thi học kỳ 1 Toán 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2020 – 2021 trường chuyên Lê Hồng Phong – TP HCM : + Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số 1221 là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có 4 chữ số, tính xác suất chọn được số chia hết cho 7. + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là các điểm trên cạnh CD, AD, SA thỏa MD = 2MC, NA = 3ND, PA = 3PS. Gọi G là trọng tâm tam giác SBC. a) Tìm giao điểm K của đường thẳng BM và mặt phẳng (SAC). b) Chứng minh mặt phẳng (NPK) song song mặt phẳng (SCD). c) Chứng minh đường thẳng MG song song mặt phẳng (SAD). + Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.