Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thể tích khối đa diện - Phạm Thu Hiền

Tài liệu gồm 30 trang hệ thống hóa lý thuyết thể tích khối đa diện và hướng dẫn giải một số bài toán thể tích khối đa diện điển hình. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh 12. Nội dung chuyên đề: Vấn đề 1 : Thể tích vật thể Thể tích vật thể K là phần mà vật thể đó chiếm chổ trong không gian Thể tích của vật thể K được kí hiệu V. V là một số lớn hơn 0 thỏa mãn các tính chất sau: 1. Hai khối đa diện bằng nhau thì thể tích bằng nhau 2. Thể tích khối lập phương bằng 1 thì V = 1 3. Nếu một khối đa diện được phân chia thành các khối đa diện thì thể tích khối ban đầu bằng tổng thể tích các khối đã phân chia Vấn đề 2 : Thể tích khối chóp Để tính thể tích khối chóp ta cần tính được chiều cao và diện tích đáy [ads] 1. Tính chiều cao Ta chính xác hóa chân đường cao + Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu bằng nhau, suy ra hình chóp có các cạnh bên bằng nha thì chân đường cao là tâm đường tròn ngoại tiếp đa giác đáy + Hai mặt phẳng vuông góc với nhau. Đường thẳng nào nằm trong mặt phẳng này mà vuông góc với giao tuyến thì vuông góc với mặt phẳng kia. Suy ra cách tìm hình chiếu H của A trên mp (P): • Tìm mặt phẳng pQq chứa A sao cho (Q) ⊥ (P) • Xác định giao tuyến d của (P) và (Q) • Trong (Q) dựng AH ⊥ d tại H + Hai mặt phẳng cắt nhau cùng vuông góc với một mặt phẳng thì giao tuyến của nó vuông góc với mặt phẳng đó + Hình chóp có các mặt bên tạo với đáy một góc bằng nhau thì chân đường cao trùng với tâm đường tròn nội tiếp đa giác đáy 2. Tính diện tích đáy: Sử dung các công thức tính diện tích tam giác, tứ giác … Vấn đề 3 : Thể tích khối lăng trụ 1. Công thức tính thể tích khối lăng trụ V = B.h, với B là diện tích đáy, h là chiều cao 2. Một số hình lăng trụ đặc biệt a. Hình lăng trụ đứng: Lăng trụ có cạnh bên vuông với đáy b. Hình lăng trụ đều : Lăng trụ đứng và đáy là đa giác đều c. Hình hộp : Lăng trụ và đáy là hình bình hành d. Hình hộp đứng: Lăng trụ đứng và đáy là hình bình hành Vấn đề 4 : Tỉ số thể tích

Nguồn: toanmath.com

Đọc Sách

Toàn cảnh khối đa diện và thể tích trong đề THPT môn Toán của Bộ GDĐT (2016 - 2021)
Tài liệu gồm 109 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập 113 bài toán chuyên đề khối đa diện và thể tích khối đa diện trong các đề thi tham khảo, đề thi minh họa và đề thi chính thức THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm 2016 đến năm 2021, có đáp án và lời giải chi tiết; giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 phần Hình học chương 1 và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Tài liệu được phân chia ra 03 phần cho học sinh dễ theo dõi: phần đề bài (trang 01) để học sinh tự làm, phần bảng đáp án (trang 41) để học sinh dò kết quả và phần đáp án – lời giải chi tiết (trang 42). Trích dẫn tài liệu toàn cảnh khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GD&ĐT (2016 – 2021): + Câu 25 – MĐ 102 – BGD&ĐT – Năm 2016 – 2017: Mặt phẳng AB C chia khối lăng trụ ABC A B C thành các khối đa diện nào? Ⓐ. Một khối chóp tam giác và một khối chóp ngũ giác. Ⓑ. Một khối chóp tam giác và một khối chóp tứ giác. Ⓒ. Hai khối chóp tam giác. Ⓓ. Hai khối chóp tứ giác. + Câu 45 – MĐ 102 – BGD&ĐT – Đợt 2 – Năm 2019 – 2020: Cho hình chóp đều S ABCD có cạnh đáy bằng 4a, cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? Gọi E F K H lần lượt là trung điểm của AB BC CD DA và M N P Q lần lượt là hình chiếu vuông góc của O trên SE SF SK SH M N P Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD SDA. Ta có 2 2 2 2 SO SD OD a a a OE OF OK OH 2 3 2 2 2 các tam giác SOE SOF SOK SOH vuông cân tại O và bằng nhau nên M N P và Q lần lượt là trung điểm của của SE SF SK SH MNPQ là hình vuông cạnh a 2. Mặt khác ta có OM ON OP OQ a 2 O MNPQ là hình chóp đều có tất cả các cạnh bằng a 2 nên có đường cao bằng 2 2 1 a a a. Khi đó thể tích của khối chóp O MNPQ bằng 3 1 2 2 3 3. + Câu 47 – MĐ 101 – BGD&ĐT – Năm 2017 – 2018: Trong không gian Oxyz, cho mặt cầu S có tâm I và đi qua điểm A. Xét các điểm B C D thuộc S sao cho AB AC AD đôi một vuông góc với nhau. Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng? Lời giải: Chọn D. Ta có: Dựng hình hộp chữ nhật ABEC DFGH. I là tâm mặt cầu ngoại tiếp A BCD. I là trung điểm của AG. Dấu đẳng thức xảy ra x y z 6. Vậy max 36 VABCD.
Chuyên đề thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 127 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp kiến thức cần nhớ, các dạng toán kèm phương pháp giải và bài tập chuyên đề thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện và thể tích của chúng và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu chuyên đề thể tích khối đa diện – Lê Minh Tâm: I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP + Dạng toán 1. CHÓP CÓ CẠNH BÊN VUÔNG GÓC VỚI ĐÁY (Trang 6). + Dạng toán 2. CHÓP CÓ MẶT BÊN VUÔNG GÓC VỚI ĐÁY (Trang 8). + Dạng toán 3. CHÓP ĐỀU (Trang 11). + Dạng toán 4. TỶ SỐ THỂ TÍCH (Trang 14). + Dạng toán 5. TỔNG HIỆU THỂ TÍCH (Trang 18). + Dạng toán 6. THỂ TÍCH LĂNG TRỤ ĐỨNG (Trang 24). + Dạng toán 7. THỂ TÍCH LĂNG TRỤ XIÊN (Trang 29). + Dạng toán 8. THỂ TÍCH KHỐI LẬP PHƯƠNG – KHỐI HỘP (Trang 33). + Dạng toán 9. KHỐI ĐA DIỆN ĐƯỢC CẮT RA TỪ KHỐI LĂNG TRỤ (Trang 37). + Dạng toán 10. MAX – MIN THỂ TÍCH (Trang 44). III. BÀI TẬP RÈN LUYỆN IV. BẢNG ĐÁP ÁN THAM KHẢO
Bài toán khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GDĐT (2017 - 2021)
Tài liệu gồm 61 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam, tuyển tập các bài toán khối đa diện và thể tích khối đa diện trong các đề thi minh họa và đề thi chính thức THPT môn Toán của Bộ Giáo dục và Đào tạo giai đoạn từ năm 2017 đến năm 2021; các bài toán có đáp án và lời giải chi tiết. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện và thể tích khối đa diện và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu bài toán khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GD&ĐT (2017 – 2021): + Mặt phẳng (AB’C’) chia khối lăng trụ ABC.A’B’C’ thành các khối đa diện nào? A. Một khối chóp tam giác và một khối chóp ngũ giác. B. Một khối chóp tam giác và một khối chóp tứ giác. C. Hai khối chóp tam giác. D. Hai khối chóp tứ giác. + Cho hình chóp đều S ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng với S qua O. Thể tích của khối chóp S’.MNPQ bằng? + Cho khối lăng trụ ABC.A’B’C’, khoảng cách từ C đến đường thẳng BB’ bằng 2, khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng 1 và 3, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm M của B’C’ và A’M = 2. Thể tích của khối lăng trụ đã cho bằng?
Bài giảng khối đa diện lồi và khối đa diện đều
Tài liệu gồm 10 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề khối đa diện lồi và khối đa diện đều, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện. Mục tiêu : Kiến thức : + Biết khái niệm khối đa diện lồi, đa diện đều. + Nhận biết năm khối đa diện đều. + Biết tính đối xứng qua mặt phẳng của các loại khối đa điện đều. Kĩ năng : + Phân biệt được một hình vẽ có phải hình đa diện lồi hay không. + Biết số đỉnh, cạnh, mặt của năm khối đa diện đều. + Thành thạo đếm số mặt phẳng đối xứng, tâm đứng xối, trục đối xứng của các khối đa diện đều. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận diện đa diện lồi, đa diện đều. Khối đa diện được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của khối đa diện thuộc khối đa diện. Dạng 2 : Các đặc điểm của khối đa diện đều. Chỉ có năm loại khối đa diện đều. Đó là loại {3;3}, {4;3}, {3;4}, {5;3} và {3;5}. Dựa vào bảng tóm tắt phần lý thuyết các thông số: Đỉnh cạnh mặt của các khối đa diện để giải toán. Dựa vào tính chất phép biến hình để tìm mặt phẳng đối xứng, tâm đối xứng, trục đối xứng … của các loại khối đa diện. Công thức Ơ-le: Trong một đa diện lồi nếu gọi Đ là số đỉnh, C là số cạnh, M là số mặt thì ta có công thức Đ – C + M = 2.