Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên năm 2018 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)

Nội dung Đề tuyển sinh chuyên năm 2018 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Đề tuyển sinh chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên) Đề tuyển sinh lớp 10 chuyên năm 2018-2019 môn Toán của sở GD và ĐT Thái Bình được biên soạn dành riêng cho các thí sinh chuyên Toán, Tin. Đề bao gồm 6 bài toán được tổ chức theo hình thức tự luận, thời gian làm bài 150 phút. Kết quả của bài thi này sẽ là cơ sở quan trọng để tuyển chọn những em học sinh có năng khiếu vượt trội trong môn Toán và Tin học để bồi dưỡng tại các lớp chuyên. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên năm 2018-2019 môn Toán sở GD và ĐT Thái Bình: 1. Cho nửa đường tròn có đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có diện tích lớn nhất, trong đó hai đỉnh M, N thuộc nửa đường tròn và hai đỉnh P, Q thuộc đường kính AB. 2. Hai cây nến cùng chiều dài cháy hết trong 3 giờ và 4 giờ. Tính thời gian cần để đốt chúng sao cho phần còn lại của cây nến thứ hai gấp đôi phần còn lại của cây nến thứ nhất, bắt đầu từ lúc nào trong chiều. 3. Cho tam giác ABC có các cạnh AB = 4, AC = 3, BC = 5 và đường cao AH. Vẽ hai nửa đường tròn BH và HC trên nửa mặt phẳng bờ BC chứa điểm A. Chứng minh rằng tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến của hai đường tròn BH và HC.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào THPT lần 1 năm 2024 - 2025 phòng GDĐT Vụ Bản - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Vụ Bản, tỉnh Nam Định; đề thi gồm 02 trang, cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào THPT lần 1 năm 2024 – 2025 phòng GD&ĐT Vụ Bản – Nam Định : + Ngày 04 06 1783 anh em nhà Mông–gôn–fi-ê (Montgolfier) người Pháp phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu đường kính 11 m. Diện tích mặt khinh khí cầu đó bằng? + Cho hình vuông ABCD có chu vi là 40 cm. Vẽ cung tròn (B BA) cắt đường chéo BD tại M cung tròn (D DM) cắt các cạnh DA DC lần lượt tại E F (hình vẽ bên). Tính diện tích phần hình vuông ABCD ở ngoài hai cung tròn (phần tô đậm trong hình, kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O có 2 đường cao BE, CF (E AC F AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N. a) Chứng minh tứ giác BF CE nội tiếp và A F ANC E b) Gọi P Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh HF NCB E và HE MQ HB HF MP NC.