Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh

Nội dung Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh Bản PDF Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG lớp 12 môn Toán năm 2019 2020 trường chuyên Lê Quý Đôn Quảng Trị
Nội dung Đề thi chọn HSG lớp 12 môn Toán năm 2019 2020 trường chuyên Lê Quý Đôn Quảng Trị Bản PDF Vừa qua, trường THPT chuyên Lê Quý Đôn, trực thuộc sở Giáo dục và Đào tạo tỉnh Quảng Trị đã tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2019 – 2020. Đề thi chọn HSG Toán lớp 12 năm 2019 – 2020 trường chuyên Lê Quý Đôn – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có hướng dẫn giải. Trích dẫn đề thi chọn HSG Toán lớp 12 năm 2019 – 2020 trường chuyên Lê Quý Đôn – Quảng Trị : + Từ các chữ số 0, 3, 4, 5, 6, 7, 8, 9 lập được bao nhiêu số chẵn, có ba chữ số khác nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD và các điểm M, N thỏa mãn: MA + 2MC = 0, 2NA + ND = 0. a) Chứng minh tam giác BMN vuông cân. b) Tìm tọa độ điểm A, biết N(2;2), đường thẳng BM có phương trình x – 2y – 3 = 0 và điểm A có hoành độ nhỏ hơn 2. + Cho hình chóp S.ABC có SA = SB = SC và đáy là tam giác vuông cân với cạnh huyền AB = a√2. Mặt bên (SBC) hợp với mặt đáy một góc p sao cho cosp= 1/√13. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng AB và SC.
Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 sở GD ĐT Bình Phước
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2019 sở GD ĐT Bình Phước Bản PDF Ngày 22 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 năm 2019 môn Toán, với mục đích tuyên dương, khích lệ các em trong quá trình học tập, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Bình Phước, tham dự kỳ thi học sinh giỏi môn Toán cấp Quốc gia trong năm học 2019 – 2020. Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 sở GD&ĐT Bình Phước gồm 01 trang với 06 bài toán tự luận, thời gian học sinh làm bài là 180 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2019 sở GD&ĐT Bình Phước : + Có 27 tấm thẻ được đánh các số tự nhiên từ 1 đến 27 (mỗi thẻ đánh đúng một số). Rút ngẫu nhiên ba thẻ. Tính xác suất để rút được ba thẻ mà tổng các số trên ba thẻ chia hết cho 3. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy. Cho tam giác ABC nội tiếp đường tròn tâm I(-2;-1), góc AIB = 90 độ, H(-1;-3) là hình chiếu vuông góc của A lên BC và K(−1;2) là một điểm thuộc đường thẳng AC. Tìm tọa độ các đỉnh A, B, C. Biết rằng điểm A có hoành độ dương. + Cho tam giác ABC (AB < AC). Đường phân giác trong góc A cắt đường tròn ngoại tiếp tam giác ABC tại điểm D. Gọi E là giao điểm của đường trung trực của đoạn thẳng AC và đường phân giác ngoài của góc A. Gọi H là giao điểm của DE và AC. Đường thẳng qua H và vuông góc với DE cắt AE tại F. Đường thẳng qua F vuông góc với AE cắt AB tại K. Chứng minh rằng KH song song BC.
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT Ninh Bình
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 2020 sở GD ĐT Ninh Bình Bản PDF Ngày 11 tháng 09 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình với 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Ninh Bình : + Cho tam giác nhọn ABC, đường cao AD (D thuộc BC) và hai điểm M, N lần lượt nằm trên các cạnh AB, AC sao cho MN song song với BC. Điểm P chuyển động trên đoạn thẳng MN. Lấy các điểm E, F sao cho EP ⊥ AC, EC ⊥ BC, FP ⊥ AB, FB ⊥ BC. a) Gọi I là giao của EF và AD. Chứng minh rằng I cố định khi P chuyển động trên đoạn MN. b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. Chứng minh rằng đường trung trực của đoạn thẳng BC đi qua trung điểm của đoạn thẳng PQ. [ads] + Cho số nguyên dương n và tập hợp S = {1;2 … n}. Tìm số các tập con của S không chứa hai số nguyên dương liên tiếp. + Xét phương trình: x^n = x^2 + x + 1, n thuộc N, n > 2. a) Chứng minh rằng với mỗi số tự nhiên n lớn hơn 2 phương trình trên có đúng một nghiệm dương duy nhất. b) Gọi xn là nghiệm dương duy nhất của phương trình trên. Tính limxn.
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Quảng Bình Bản PDF Ngày 14 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 khối THPT năm học 2018 – 2019. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Quảng Bình được biên soạn theo dạng đề tự luận, đề gồm 1 trang với 5 bài toán, học sinh làm bài thi trong khoảng thời gian 180 phút, không kể thời gian giám thị coi thi phát đề. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Quảng Bình : + Cho sáu thẻ, mỗi thẻ ghi một trong các số của tập E = {1;2;3;4;6;8} (các thẻ khác nhau ghi các số khác nhau). Rút ngẫu nhiên ba thẻ, tính xác suất để rút được ba thẻ ghi ba số là số đo ba cạnh của một tam giác có góc tù. [ads] + Cho khối tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho SM/MA = 1/2, SN/NB = 2. Gọi (P) là mặt phẳng đi qua hai điểm M, N và song song với đường thẳng SC. a. Trong trường hợp SABC là tứ diện đều cạnh a, xác định và tính theo a diện tích thiết diện của khối tứ diện SABC với mặt phẳng (P). b. Trong trường hợp bất kì, mặt phẳng (P) chia tứ diện SABC thành hai phần. Tính tỉ số thể tích của hai phần đó. + Cho hàm số y = 1/x có đồ thị là đường cong (C) và điểm I(-5/6;5/4). Viết phương trình đường thẳng d đi qua I và cắt (C) tại hai điểm M, N sao cho I là trung điểm của MN. File WORD (dành cho quý thầy, cô):