Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT Ninh Bình; đề thi gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Cho đường tròn tâm O bán kính R. Dây cung BC cố định, không đi qua tâm O. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I, H lần lượt là trung điểm của BC và MN, BC cắt MN tại K. 1. Chứng minh bốn điểm O, M, N, I cùng thuộc một đường tròn và HK là tia phân giác của BHC. 2. Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở E. Chứng minh M, N, E thẳng hàng. 3. Đường thẳng ∆ qua điểm M và vuông góc với đường thẳng ON, cắt đường tròn (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để tứ giác AMPN là hình bình hành. + Tìm các số nguyên x, y thoả mãn: 2 y x 5x 7 3. + Cho một bảng ô vuông m x n (gồm m dòng và n cột). Cho quy tắc tô màu bảng ô vuông như sau: Mỗi ô vuông đơn vị được tô bằng màu đỏ hoặc màu xanh sao cho bất kì bảng ô vuông 2 x 3 hoặc 3 x 2 nào cũng có đúng hai ô được tô màu đỏ. a) Hãy chỉ ra một cách tô màu theo quy tắc trên cho bảng ô vuông 4 x 6 (Điền chữ Đ vào ô được tô màu đỏ, chữ X vào ô được tô màu xanh). b) Người ta đã tô bảng ô vuông 2021 x 2022 theo quy tắc trên. Hỏi bảng ô vuông này có bao nhiêu ô được tô màu đỏ?

Nguồn: toanmath.com

Đọc Sách

Đề chọn HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 03 trang, gồm 16 câu trắc nghiệm (08 điểm) + 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn Đề chọn HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho điểm A di chuyển trên đường tròn tâm O đường kính BC R 2 (A không trùng với B và C). Trên tia AB lấy điểm M sao cho B là trung điểm của AM. Gọi H là hình chiếu vuông góc của A lên BC và I là trung điểm của HC. Chứng minh: a) Tam giác AHM và tam giác CIA đồng dạng. b) MH vuông góc với AI. c) M chuyển động trên một đường tròn cố định. + Cho đường tròn O R đường kính AB. Đường thẳng d tiếp xúc với đường tròn tại A và M là điểm di động trên đường thẳng d M A. Đường thẳng qua O vuông góc với BM cắt đường thẳng d tại N. Giá trị nhỏ nhất của MN bằng? + Một đồng hồ có kim giờ dài 4cm và kim phút dài 6cm. Lúc 16 giờ đúng khoảng cách giữa hai đầu kim là?
Đề khảo sát HSG Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2023.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Tìm số nguyên n sao cho C = n2 – 3n + 4 là số chính phương. b) Cho các số nguyên a, b, c thỏa mãn a + b + c = 2023. Chứng minh rằng a3 + b3 + c3 – 1 chia hết cho 6. + Cho tam giác ABC vuông tại A, Gọi D, E lần lượt là trung điểm của BC, AC. Đường thẳng qua C vuông góc với BC cắt DE tại F, H là hình chiếu của C lên BF. a) Chứng minh FH.FB = FE.FD. b) Chứng minh tam giác ABH đồng dạng với tam giác ECH. c) Gọi I là trung điểm của FE. Chứng minh A, H, I thẳng hàng. + Cho các số dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = 2 25 2 9 a ab b a c.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Vân Canh - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Vân Canh, tỉnh Bình Định; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Vân Canh – Bình Định : + Cho ∆ABC có đường phân giác trong AD. Trên tia đối của tia DA lấy điểm E sao cho ECD BAD. a. Chứng minh AD.DE = BD.CD. b. Chứng minh 2 AD AB.AC BD.CD. + Cho tam giác ABC nhọn và một điểm P thuộc miền trong tam giác. Gọi DEF theo thứ tự là hình chiếu của P trên các cạnh BC CA AB. a. Chứng minh 2 2 2 22 2 BD CE AF DC EA FB. b. Xác định vị trí điểm P trong ∆ABC để tổng 22 2 DC EA FB đạt giá trị nhỏ nhất. + Tìm hệ số a để đa thức f(x) = x3 – 8×2 + ax – 5 chia hết cho đa thức g(x) = x2 – 3x + 1.