Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và các dạng bài tập Toán 11 học kì 1 - Nguyễn Quốc Dương

Tài liệu gồm 407 trang, được biên tập bởi thầy giáo Nguyễn Quốc Dương, tóm tắt lý thuyết và các dạng bài tập Toán 11 học kì 1, có đáp án và lời giải chi tiết, bám sát chương trình SGK Toán 11. PHẦN I ĐẠI SỐ – GIẢI TÍCH 13. CHƯƠNG 1 Hàm số lượng giác – Phương trình lượng giác 15. 1 Công thức lượng giác cần nắm 15. A Tóm tắt lý thuyết 15. 2 Hàm số lượng giác 18. A Tóm tắt lý thuyết 18. B Các dạng toán thường gặp 20. Dạng 2.1. Tìm tập xác định của hàm số lượng giác 20. 1 Bài tập vận dụng 21. 2 Bài tập tự luyện 22. Dạng 2.2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác 23. 1 Ví dụ 23. 2 Bài tập áp dụng 24. 3 Bài tập rèn luyện 27. Dạng 2.3. Xét tính chẵn lẻ của hàm số lượng giác 28. 1 Ví dụ 28. 2 Bài tập áp dụng 29. 3 Bài tập rèn luyện 29. CHƯƠNG 2 Hàm số lượng giác – phương trình lượng giác 31. 1 Phương trình lượng giác 31. A Phương trình lượng giác cơ bản 31. 1 Ví dụ 31. 2 Bài tập áp dụng 32. 3 Bài tập rèn luyện 32. B Một số kỹ năng giải phương trình lượng giác 33. Dạng 1.1. Sử dụng thành thạo cung liên kết 33. 1 Ví dụ 33. 2 Bài tập áp dụng 34. 3 Bài tập rèn luyện 38. Dạng 1.2. Ghép cung thích hợp để áp dụng công thức tích thành tổng 39. 1 Ví dụ 39. 2 Bài tập áp dụng 40. 3 Bài tập rèn luyện 42. Dạng 1.3. Hạ bậc khi gặp bậc chẵn của sin và cos 43. 1 Ví dụ 43. 2 Bài tập áp dụng 44. 3 Bài tập rèn luyện 45. Dạng 1.4. Xác định nhân tử chung để đưa về phương trình tích 46. 1 Ví dụ 46. 2 Bài tập áp dụng 47. 3 Bài tập rèn luyện 49. CHƯƠNG 3 Hàm số lượng giác – phương trình lượng giác 69. 1 Phương trình lượng giác đưa về bậc hai và bậc cao cùng một hàm lượng giác 69. A Tóm tắt lý thuyết 69. B Dạng toán và bài tập 69. 1 Ví dụ 69. 2 Bài tập vận dụng 71. 3 Bài tập tự luyện 79. 2 Phương trình bậc nhất đối với sin và cos 81. A Tóm tắt lý thuyết 81. B Ví dụ và bài tập 82. 1 Ví dụ 82. 2 Bài tập áp dụng 86. 3 Bài tập rèn luyện 90. 3 Phương trình lượng giác đẳng cấp (bậc 2, bậc 3, bậc 4) 91. A Tóm tắt lý thuyết 91. B Ví dụ 92. C Bài tập áp dụng 93. 4 Phương trình lượng giác đối xứng 99. A Tóm tắt lý thuyết 99. B Ví dụ 99. C Bài tập áp dụng 100. D Bài tập rèn luyện 105. 5 Một số phương trình lượng giác khác 105. A Tóm tắt lý thuyết 105. B Ví dụ 106. C Bài tập áp dụng 107. D Bài tập rèn luyện 111. 6 Phương trình lượng giác có cách giải đặc biệt 111. A Tóm tắt lý thuyết 111. B Ví dụ 112. C Bài tập áp dụng 114. D Bài tập rèn luyện 118. 7 Bài tập ôn cuối chương I 119. CHƯƠNG 4 Tổ hợp và xác suất 131. 1 Các quy tắc đếm cơ bản 131. A Tóm tắt lý thuyết 131. B Dạng toán và bài tập 132. 1 Ví dụ 132. Dạng 1.1. Bài toán sử dụng quy tắc cộng 132. Dạng 1.2. Bài toán sử dụng quy tắc nhân 132. Dạng 1.3. Bài toán sử dụng quy tắc bù trừ 133. 1 Bài tập áp dụng 134. 2 Hoán vị – Chỉnh hợp – Tổ hợp 145. A Tóm tắt lý thuyết 145. B Ví dụ minh họa 146. C Dạng toán và bài tập 148. Dạng 2.1. Giải phương trình, bất phương trình, hệ phương trình 148. 1 Ví dụ 148. 2 Bài tập áp dụng 151. 3 Bài tập rèn luyện 153. Dạng 2.2. Các bài toán sử dụng hoán vị 154. 1 Ví dụ 154. 2 Bài tập áp dụng 156. 3 Bài tập rèn luyện 157. Dạng 2.3. Các bài toán sử dụng chỉnh hợp 158. 1 Ví dụ 158. 2 Bài tập áp dụng 160. 3 Bài tập rèn luyện 161. Dạng 2.4. Các bài toán sử dụng tổ hợp 162. 1 Ví dụ 162. 2 Bài tập áp dụng 164. 3 Bài tập rèn luyện 165. 3 Nhị thức Newton 167. A Nhị thức Newton 167. B Tam giác Pascal 167. C Dạng toán và bài tập 168. Dạng 3.1. Tìm hệ số hoặc số hạng thỏa mãn điều kiện cho trước 168. 1 Ví dụ minh họa 168. 2 Bài tập áp dụng 170. 3 Bài tập rèn luyện 172. Dạng 3.2. Tìm hệ số trong khai triển nhị thức Niu-tơn (a + b)n 173. 1 Ví dụ 173. 2 Bài tập áp dụng 175. 3 Bài tập rèn luyện 178. Dạng 3.3. Chứng minh hoặc tính tổng 181. 1 Ví dụ 181. 2 Bài tập áp dụng 183. 3 Bài tập rèn luyện 184. 4 Biến cố và xác suất của biến cố 185. A Phép thử 185. B Biến cố 185. C Xác suất 186. Dạng 4.1. Chọn hoặc sắp xếp đồ vật 188. D Lí thuyết 188. E Ví dụ 188. F Bài tập rèn luyện 190. G Bài tập tự luyện 192. Dạng 4.2. Chọn hoặc sắp xếp người 194. H Lí thuyết 195. I Ví dụ 195. J Bài tập rèn luyện 196. K Bài tập tự luyện 199. Dạng 4.3. Chọn hoặc sắp xếp số 203. L Lí thuyết 203. M Ví dụ 204. N Bài tập rèn luyện 206. O Bài tập tự luyện 209. 5 Các quy tắc tính xác suất 215. A Tóm tắt lý thuyết 215. 1 Quy tắc cộng xác suất 215. 2 Quy tắc nhân xác suất 217. B Bài tập áp dụng 218. 6 Bài tập ôn chương 2 225. CHƯƠNG 5 Dãy số – Cấp số cộng – Cấp số nhân 233. 1 Phương pháp quy nạp toán học 233. A Tóm tắt lý thuyết 233. B Dạng toán và bài tập 233. Dạng 1.1. Chứng minh mệnh đề P(n) đúng với mọi số tự nhiên n 233. 1 Ví dụ 233. 2 Bài tập áp dụng 235. 3 Bài tập rèn luyện 239. 2 Dãy số 244. A Tóm tắt lý thuyết 244. 1 Định nghĩa 244. 2 Cách cho một dãy số 244. 3 Dãy số tăng, dãy số giảm 244. 4 Dãy số bị chặn 244. B Dạng toán và bài tập 245. Dạng 2.1. Tìm số hạng của dãy số cho trước 245. 1 Ví dụ 245. 2 Bài tập áp dụng 246. 3 Bài tập rèn luyện 248. Dạng 2.2. Xét tính tăng, giảm của dãy số 249. 1 Ví dụ 249. 2 Bài tập áp dụng 250. 3 Bài tập rèn luyện 252. Dạng 2.3. Tính bị chặn của dãy số 255. 1 Ví dụ 255. 2 Bài tập áp dụng 256. 3 Bài tập rèn luyện 257. 3 Cấp số cộng 259. A Tóm tắt lý thuyết 259. B Dạng toán và bài tập 260. 1 Ví dụ 260. 2 Bài tập áp dụng 262. 4 Cấp số nhân 279. A Tóm tắt lý thuyết 279. B Dạng toán và bài tập 279. 1 Ví dụ 279. 2 Bài tập áp dụng 281. 3 Bài tập rèn luyện 285. PHẦN II HÌNH HỌC 289. CHƯƠNG 1 Phép biến hình 291. 1 Mở đầu về phép biến hình 291. A Tóm tắt lý thuyết 291. 2 Phép tịnh tiến 291. A Tóm tắt lý thuyết 291. B Dạng toán và bài tập 292. Dạng 2.1. Xác định ảnh của một hình qua phép tịnh tiến 292. 1 Ví dụ 292. 2 Bài tập áp dụng 293. 3 Bài tập rèn luyện 295. Dạng 2.2. Xác định phép tịnh tiến khi biết ảnh và tạo ảnh 295. 1 Ví dụ 295. 2 Bài tập áp dụng 296. 3 Bài tập rèn luyện 297. Dạng 2.3. Các bài toán ứng dụng của phép tịnh tiến 297. 1 Ví dụ 298. 2 Bài tập áp dụng 298. 3 Bài tập rèn luyện 299. 3 Phép đối xứng trục (Bài đọc thêm) 299. A Định nghĩa 299. B Biểu thức tọa độ 299. C Tính chất 300. D Trục đối xứng của một hình 300. 4 Phép quay 300. A Tóm tắt lý thuyết 300. B Dạng toán và bài tập 301. Dạng 4.1. Tìm tọa độ ảnh của một điểm qua phép quay 301. 1 Ví dụ 301. 2 Bài tập áp dụng 301. 3 Bài tập rèn luyện 302. Dạng 4.2. Tìm phương trình ảnh của một đường tròn qua phép quay 302. 1 Ví dụ 302. 2 Bài tập áp dụng 303. 3 Bài tập rèn luyện 303. 5 Phép đối xứng tâm 307. A Tóm tắt lý thuyết 307. 6 Phép vị tự và phép đồng dạng 308. A Tóm tắt lý thuyết 308. B Dạng toán và bài tập 310. Dạng 6.1. Phép vị tự trong hệ tọa độ Oxy 310. 1 Ví dụ 310. 2 Bài tập áp dụng 311. CHƯƠNG 2 Đường thẳng và mặt phẳng trong không gian 315. 1 Đại cương về đường thẳng và mặt phẳng 315. A Tóm tắt lý thuyết 315. B Dạng toán và bài tập 317. Dạng 1.1. Xác định giao tuyến của hai mặt phẳng 317. 1 Ví dụ 317. 2 Bài tập áp dụng 318. 3 Bài tập tự luyện 320. Dạng 1.2. Tìm giao điểm của đường thẳng d và mặt phẳng (α) 321. 1 Ví dụ 321. 2 Bài tập áp dụng 322. 3 Bài tập rèn luyện 328. Dạng 1.3. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (α). 329. 1 Ví dụ 329. 2 Bài tập áp dụng 330. 3 Bài tập tự luyện 335. Dạng 1.4. Chứng minh ba điểm thẳng hàng 335. 1 Ví dụ 336. 2 Bài tập áp dụng 337. 3 Bài tập rèn luyện 342. Dạng 1.5. Chứng minh ba đường thẳng đồng quy 346. 1 Ví dụ 346. 2 Bài tập áp dụng 346. 3 Bài tập rèn luyện 350. CHƯƠNG 3 Đường thẳng và mặt phẳng trong không gian. Quan hệ song song. 351. 1 Hai đường thẳng song song. 351. A Tóm tắt lý thuyết 351. B Dạng toán và bài tập 352. Dạng 1.1. Chứng minh hai đường thẳng song song. 352. 1 Ví dụ 352. 2 Bài tập áp dụng 353. 3 Bài tập rèn luyện 354. Dạng 1.2. Tìm giao tuyến của hai mặt phẳng chứa hai đường thẳng song song. 355. 1 Ví dụ 355. 2 Bài tập áp dụng 357. 3 Bài tập rèn luyện 360. 2 Đường thẳng song song với mặt phẳng 363. A Tóm tắt lý thuyết 363. B Dạng toán và bài tập 364. Dạng 2.1. Chứng minh dường thẳng a song song với mặt phẳng (P) 364. 1 Ví dụ 364. Dạng 2.2. Tìm giao tuyến của hai mặt phẳng 365. Dạng 2.3. Tìm thiết diện song song với một đường thẳng 366. 1 Bài tập áp dụng 366. 3 Hai mặt phẳng song song 392. A Tóm tắt lý thuyết 392. 1 Vị trí tương đối của hai mặt phẳng phân biệt 392. 2 Các định lí 392. 3 Ví dụ 393. B Bài tập áp dụng 394. 4 Bài tập ôn cuối chương 2 402.

Nguồn: toanmath.com

Đọc Sách

Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, hàm số logarit thuộc chương trình Toán 12 (Giải tích 12), dành cho học sinh khá, giỏi, nhằm ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit: + Phương trình 4^(x^2 – 3x + 2) + 4^(x^2 + 6x + 5) = 4^(2x^2 + 3x + 7) + 1 có bốn nghiệm phân biệt a, b, c, d theo thứ tự tăng dần. Tính giá trị biểu thức a + 2b + 3c + 4d. + Giả sử a, b là các số thực sao cho x^3 + y^3 = a.10^3z + b.10^2z đúng với mọi số thực dương x, y, z thỏa mãn điều kiện log(x + y) = z; log(x^2 + y^2) = z + 1. Giá trị của a + b là? [ads] + Cho các số thực dương a, b khác 1. Biết rằng bất kỳ đường thẳng nào song song với trục hoành mà cắt các đường thẳng y = a^x; y = b^x, trục tung lần lượt tại M, N và A thì ta luôn có AN = 2AM (hình vẽ bên). Mệnh đề nào sau đây đúng ? + Cho hàm số y = loga x; y = logb x có đồ thị như hình vẽ bên. Đường thẳng x = 7 cắt trục hoành và các đồ thị hàm số y = loga x; y = logb x lần lượt tại H, M, N. Biết rằng 2HM = HN. Mệnh đề nào sau đây đúng? + Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4^ sin^2x + 5cos^2x ≤ m.7cos^2x có nghiệm là nửa khoảng [a/b;+vc) với a, b nguyên dương và phân số a/b tối giản. Tính giá trị của S = a + b.
Bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết - Nguyễn Xuân Chung
Tài liệu gồm có 56 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Xuân Chung, chọn lọc các câu hỏi và bài tập trắc nghiệm chủ đề mũ và lôgarit vận dụng cao (cách gọi khác: mũ và lôgarit nâng cao, mũ và lôgarit khó, mũ và lôgarit VDC …) có đáp án, lời giải chi tiết và bình luận sau bài toán, giúp bạn đọc hiểu được hướng tư duy, tiếp cận và giải quyết bài toán; phần lời giải chi tiết được trình bày ngắn gọn, có hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh; tài liệu giúp học sinh giải quyết tốt các bài toán khó trong chương trình Giải tích 12 và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung được tác giả chia thành ba phần: phần thứ nhất gồm các câu hỏi và bài tập được trích từ các đề thi THPT Quốc gia môn Toán chính thức, các đề minh họa, đề tham khảo THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong những năm gần đây; phần thứ hai gồm các câu hỏi và bài tập được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên cả nước; phần thứ ba gồm một số câu hỏi và bài tập tương tự giúp học sinh rèn luyện thêm. [ads] Trích dẫn tài liệu bài tập mũ và lôgarit vận dụng cao có lời giải chi tiết – Nguyễn Xuân Chung: + Cho phương trình 2^x = √(m.2^x.cos(pi.x) – 4) với m là tham số thực. Gọi m0 là giá trị của m để phương trình đã cho có đúng 1 nghiệm thực. Mệnh đề nào sau đây đúng? + Cho hai số thực dương x và y thỏa mãn điều kiện: 3 + ln((x + y + 1)/3xy) = 9xy – 3x – 3y. Giá trị nhỏ nhất của biểu thức P = xy là? + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Có bao nhiêu giá trị nguyên của m để phương trình f(2log_2 x) = m có nghiệm duy nhất trên [1/2;2). + Đồ thị hàm số y = f(x) đối xứng với đồ thị của hàm số y = a^x (a > 0 và a khác 1) qua điểm I(1;1). Giá trị của biểu thức f(2 + log_a 1/2018) bằng? + Đây là bài toán khó vì số mũ của lũy thừa là biểu thức phức tạp. Nếu để nguyên để khảo sát thì gặp khó khăn lớn khi phải đạo hàm và tìm nghiệm, rồi còn phải lập bảng biến thiên … do đó gặp tình huống này thì chúng ta nghĩ đến phương pháp đánh giá để giảm độ phức tạp. Nói như vậy: phương pháp đạo hàm là công cụ mạnh để giải toán hàm số, nhưng trong trường hợp này chưa chắc tỏ ra là “mạnh”. Bài toán trên là thi Olimpic hay sao nhỉ? Ra đề thi kiểu như vậy thì bó tay!
Phân dạng và bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án - Nguyễn Bảo Vương
Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương phân dạng và tuyển tập các bài tập trắc nghiệm lũy thừa, mũ và logarit có đáp án, các bài toán được sắp xếp theo từng nội dung trong SGK Giải tích 12 chương 2. BÀI 1 . LŨY THỪA Dạng 1. Thực hiện phép tính, rút gọi biểu thức, lũy thừa. Dạng 2. So sánh các lũy thừa. BÀI 2 . HÀM SỐ LŨY THỪA Dạng 1. Tập xác định của hàm số lũy thừa. Dạng 2. Tính chất hàm số lũy thừa. BÀI 3 . LOGARIT Bảng tóm tắt công thức Mũ-loarrit thường gặp. Dạng 1. Tính giá trị biểu thức chứa logarit. Dạng 2. Các mệnh đề liên quan đến logarit. Dạng 3. Biểu diễn logarit này theo logarit khác. BÀI 4 . HÀM SỐ MŨ – HÀM SỐ LŨY THỪA Dạng 1. Tìm tập xác định của hàm số mũ – hàm số lũy thừa. Dạng 2. Tính đạo hàm các cấp hàm số mũ, hàm số logarit. Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit. Dạng 4. Tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số mũ – logarit hàm nhiều biến. Dạng 5. Sự biến thiên của hàm số mũ – logarit. Dạng 6. Toán cực trị liên quan đến hàm số mũ – logarit. Dạng 7. Đọc đồ thị hàm số mũ – logarit. Dạng 8. Bài toán lãi suất. [ads] BÀI 5 . PHƯƠNG TRÌNH MŨ Dạng 1. Phương trình mũ không chứa tham số. + Bài toán tìm nghiệm phương trình mũ không có điều kiện nghiệm. + Bài toán tính điều kiện của các nghiệm phương trình mũ. + Bài toán biến đổi phương trình mũ. Dạng 2.Phương trình mũ chứa tham số. + Bài toán tìm m để phương trình mũ có nghiệm. + Bài toán tìm m để phương trình mũ có số nghiệm bằng k. + Bài toán tìm m để phương trình mũ có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình mũ có nghiệm thuộc khoảng, đoạn cho trước. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản. + Bài toán bất phương trình mũ có điều kiện nghiệm. Dạng 2. Bất phương trình mũ chứa tham số. + Bài toán tìm m để bất phương trình có vô số nghiệm. + Bài toán tìm m để bất trình có nghiệm thuộc khoảng, đoạn, nữa khoảng cho trước. BÀI 7 . PHƯƠNG TRÌNH LOGARIT Dạng 1. Phương trình logarit không chứa tham số. + Bài toán tìm nghiệm của phương trình logarit (không có điều kiện nghiệm). + Bài toán tìm nghiệm của phương trình logarit có điều kiện nghiệm. Dạng 2. Phương trình logarit chứa tham số. + Bài toán tìm m để phương trình logarit có nghiệm. + Bài toán tìm m để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. + Bài toán tìm m để phương trình logarit có nghiệm thuộc khoảng cho trước. BÀI 8 . BẤT PHƯƠNG TRÌNH LOGARIT Dạng 1. Bất phương trình không chứa tham số. + Bài toán bất phương trình cơ bản (không có điều kiện nghiệm). + Bài toán bất phương trình logarit có điều kiện của nghiệm. Dạng 2. Bất phương trình logarit chứa tham số. + Bài toán tìm m để bất phương trình có nghiệm. Xem thêm : Giải chi tiết các dạng toán lũy thừa, mũ và logarit – Nguyễn Bảo Vương
Bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 81 trang tuyển chọn câu hỏi và bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit có lời giải chi tiết do thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh biên soạn. Các bài tập trong tài liệu đa số là các bài toán có mức độ vận dụng cao, nhiều câu là các bài toán phân loại trong các đề thi thử môn Toán. Nội dung tài liệu : Bài 01. Lũy thừa – hàm số lũy thừa Bài 02. Logarit Bài 03. Hàm số mũ và hàm số logarit + Vấn đề 1. Tìm tập xác định của hàm số của hàm số mũ và hàm số logarit + Vấn đề 2. Tính đạo hàm của hàm số mũ và hàm số logarit + Vấn đề 3. Tính đơn điệu của hàm số mũ và hàm số logarit + Vấn đề 4. Đồ thị của hàm số mũ và hàm số logarit + Vấn đề 5. Tính giá trị biểu thức chứa mũ và logarit [ads] Bài 04. Phương trình mũ, phương trình logarit bất phương trình mũ, bất phương trình loagrit + Vấn đề 1. Phương trình, bất phương trình mũ + Vấn đề 2. Phương trình, bất phương trình logarit + Vấn đề 3. Phương trình, bất phương trình mũ – logarit chứa tham số Bài 05. Hệ phương trình mũ, hệ phương trình logarit Để giải hệ phương trình mũ, hệ phương trình logarit ta thường sửa dụng các phương pháp quen thuộc như: phương pháp thế, biến đổi hệ về phương trình đại số, phương pháp hàm số … Cuối cùng là tạo ra một hệ đơn giản và kết luận nghiệm.