Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Diễn Châu Đề học sinh giỏi Toán lớp 8 năm 2021 - 2022 phòng GD&ĐT Diễn Châu Chào quý thầy cô và các em học sinh lớp 8, đây là đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2021 - 2022 do phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An tổ chức. Bài toán đầu tiên yêu cầu chúng ta chứng minh các phát biểu sau trong tam giác vuông ABC: AH2 = BH.CH và AD.AB = AE.AC. Sau đó, điều kiện BAC = 90° được cho, và cần phải chứng minh rằng đường thẳng đi qua O và vuông góc với AF sẽ luôn đi qua 1 điểm cố định. Cuối cùng, chúng ta phải chứng minh rằng trực tâm của tam giác AMN là trung điểm của OH. Phần tiếp theo của đề bài đề cập đến việc chọn 2 số có ước chung lớn nhất khác 1 từ 29 số nguyên dương nhỏ hơn 100. Câu cuối cùng đề cương về bài toán định lý Fermat với điều kiện a3 + b3 = 5c3 + 11d3 và cần chứng minh rằng a + b + c + d chia hết cho 6. Đây là những bài toán thú vị và đòi hỏi sự tư duy logic và khả năng suy luận của các em học sinh. Chúc các em thành công trong việc giải quyết các bài toán này!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 8 năm 2023 - 2024 trường THCS Song Mai - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2023 – 2024 trường THCS Song Mai, thành phố Bắc Giang, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2023 – 2024 trường THCS Song Mai – Bắc Giang : + Tìm giá trị nhỏ nhất của biểu thức 2 A x y xy y x 13 4 2 16 2019. + Chứng minh rằng: 3 2 n 3 chia hết cho 48 với mọi số nguyên lẻ n. + Cho tam giác ABC vuông tại A AB AC đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng qua D song song với AB cắt BC và AC lần lượt ở M và N. a) Chứng minh tứ giác ABDM là hình thoi. b) Chứng minh AM vuông góc với CD. c) Gọi I là trung điểm của MC chứng minh rằng IN vuông góc HN.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Bá Thước - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Bá Thước, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Bá Thước – Thanh Hoá : + Cho ba số nguyên x, y, z thỏa mãn 22 2 xy z 2. Chứng minh rằng 2 2 x y chia hết cho 48. + Cho ∆ABC vuông tại A có 0 ABC 75 trên cạnh AC lấy 2 điểm E và P sao cho ABE EBP PBC. Gọi I là chân đường vuông góc hạ từ C xuống đường thẳng BP, đường thẳng CI cắt BE ở F. 1. Chứng minh: ∆ECF cân. 2. Trên tia đối tia EB lấy điểm K sao cho EK = BC, tính số đo các góc của ∆BCK. 3. Gọi H là hình chiếu vuông góc của C trên BK, D là trung điểm của đoạn CH, L là hình chiếu vuông góc của H trên BD. Chứng minh KL vuông góc với LC. + Cho các số a, b, c khác 0 và đôi một khác nhau thoả mãn.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 27 tháng 01 năm 2024. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Chọn ngẫu nhiên hai số nguyên dương nhỏ hơn 13. Tính xác suất để hai số được chọn là hai số nguyên tố trong đó có một số chẵn và một số lẻ. + Cho a là số nguyên dương và b là ước nguyên dương của 2a2. Chứng minh rằng: a2 + b không là số chính phương. + Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy điểm M bất kì. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Qua B kẻ đường thẳng (d1) song song với AC, qua C kẻ đường thẳng (d2) song song với AB. Gọi D là giao điểm của (d1) và (d2). 1. Chứng minh: tứ giác AEMF là hình chữ nhật và tổng EM/AC + FM/AB không phụ thuộc vào vị trí điểm M. 2. Gọi O là giao điểm của AM và EF, I là giao điểm của DE với BF. Chứng minh DE vuông góc với BF tại I và OI = OM. 3. Kí hiệu S1 là diện tích tam giác BEM; S2 là diện tích tam giác CFM. Xác định vị trí điểm M để S1, S2 lớn nhất.
Đề khảo sát HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 cấp huyện vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2023. Trích dẫn Đề khảo sát HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Vũ Thư – Thái Bình : + Đa thức f(x) chia cho (x + 1) dư 2, chia cho (x – 2) dư 5, chia cho (x + 1)(x – 2) thì thương là 5x – 1 và còn dư. Tính f(4). + Cho tam giác ABC vuông tại A, kẻ phân giác trong AD (D thuộc BC), gọi M, N lần lượt là hình chiếu của D trên AB và AC. BN cắt DM tại E, CM cắt DN tại F, gọi K là giao điểm của BN và CM. a/ Tứ giác AMDN là hình gì? Vì sao? b/ Chứng minh: AB AC. c/ Chứng minh: AK vuông góc BC. + Cho tam giác ABC có AB + AC = 2BC. Gọi I là giao điểm ba đường phân giác trong, G là trọng tâm của ABC (I khác G). Chứng minh rằng IG // BC.