Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Yên Phong Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013 2014 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013-2014 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện lớp 8 môn Toán năm 2013-2014 phòng GD ĐT Yên Phong Bắc Ninh Đề học sinh giỏi huyện Toán lớp 8 năm 2013-2014 phòng GD&ĐT Yên Phong-Bắc Ninh là bài thi có độ khó cao, đầy thách thức dành cho các học sinh có năng khiếu và niềm đam mê với môn học Toán. Trong đề thi, có nhiều câu hỏi thuộc những chủ đề khá phổ biến như hình thang, từ đó giúp học sinh rèn luyện kiến thức cơ bản và nâng cao kỹ năng giải toán của mình. Với các câu hỏi về tứ giác, diện tích hình thang, góc toán học, học sinh sẽ phải thể hiện khả năng suy luận logic và tính toán chính xác để có thể đạt điểm cao. Câu hỏi cuối cùng dành cho thí sinh trường THCS Yên Phong đòi hỏi họ phải có kiến thức vững và biết kết hợp nhiều khái niệm để giải quyết vấn đề đề ra. Việc chứng minh tính đúng đắn của biểu thức toán học cũng là một yếu tố quan trọng đánh giá khả năng tư duy logic của học sinh. Trong tổng thể, đề học sinh giỏi huyện Toán lớp 8 năm 2013-2014 phòng GD&ĐT Yên Phong-Bắc Ninh là một bài kiểm tra toàn diện, giúp học sinh phát triển khả năng tư duy logic, xử lý vấn đề và rèn luyện kỹ năng giải toán. Học sinh cần phải ôn tập, luyện tập thực sự cẩn thận để có kết quả tốt trong kỳ thi này.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm định chất lượng Toán 8 năm 2021 - 2022 phòng GDĐT Nghi Lộc - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Trích dẫn đề kiểm định chất lượng Toán 8 năm 2021 – 2022 phòng GD&ĐT Nghi Lộc – Nghệ An : + Chứng minh rằng với mọi n thuộc số tự nhiên thì biểu thức M chia hết cho 21. + Tìm số tự nhiên gồm 4 chữ số thỏa mãn đồng thời hai tính chất: a) Khi chia số đó cho 100 ta được số dư là 6 b) Khi chia số đó cho 51 ta được số dư là 17. + Chứng minh rằng với mọi a thuộc Z thì N là một số chính phương.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Kim Thành – Hải Dương : + Cho biểu thức. Rút gọn A và tìm giá trị nguyên của x để A nhận giá trị nguyên. + Cho a, b, c là các số nguyên và thỏa mãn a3 + b3 = 5c3 + 11d3. Chứng minh rằng tổng (a + b + c + d) chia hết cho 6. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng (d) song song với AH, (d) cắt đường thắng AC tại P. Gọi Q là trung điểm của BP, tia AQ cắt đường thẳng BC tại I. Chứng minh.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình.
Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?