Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục các bài toán cực trị mũ và logarit - Nguyễn Minh Tuấn

Như ta đã biết trong đề thi môn toán của kì thi THPT Quốc Gia 2018 vừa qua có xuất hiện các bài toán cực trị mũ và logarit, đây là dạng toán khá mới lạ và đã gây lúng túng cho nhiều học sinh. Trong bài viết này tác giả Nguyễn Minh Tuấn sẽ cùng các bạn tìm hiểu phương pháp giải, cũng như phát triển bài toán cực trị mũ và logarit lên các mức độ cao hơn. • CÁC KIẾN THỨC CẦN NHỚ : Bất đẳng thức AM – GM, bất đẳng thức Cauchy – Schwarz, bất đẳng thức Minkowski, bất đẳng thức Holder, bất đẳng thức trị tuyệt đối, điều kiện có nghiệm của phương trình bậc 2, tính chất hàm đơn điệu … • CÁC DẠNG TOÁN CỰC TRỊ MŨ – LOGARIT : 1. KỸ THUẬT RÚT THẾ – ĐÁNH GIÁ ĐIỀU KIỆN ĐƯA VỀ HÀM MỘT BIẾN SỐ Đây là một kỹ thuật cơ bản nhất mà khi gặp các bài toán về cực trị mà ta sẽ luôn nghĩ tới, hầu hết chúng sẽ được giải quyết bằng cách thế một biểu thức từ giả thiết xuống yêu cầu từ đó sử dụng các công cụ như đạo hàm, bất đẳng thức để giải quyết. [ads] 2. HÀM ĐẶC TRƯNG Dạng toán này đề bài sẽ cho phương trình hàm đặc trưng từ đó ta sẽ đi tìm mối liên hệ giữa các biến và rút thế vào giả thiết thứ 2 để giải quyết yêu cầu bài toán. Nhìn chung dạng toán này ta chỉ cần nắm chắc được kỹ năng biến đổi làm xuất hiện được hàm đặc trưng kết hợp với kiến thức về đạo hàm là sẽ giải quyết được trọn vẹn. 3. CÁC BÀI TOÁN LIÊN QUAN TỚI ĐỊNH LÝ VI-ET Phương pháp chung của các bài toán ở dạng này hầu hết sẽ là đưa giả thiết phương trình logarit về dạng một tam thức, sau đó sử dụng định lý Vi-et và các phép biến đổi logarit để giải quyết bài toán. 4. CÁC BÀI TOÁN LIÊN QUAN TỚI BIỂU THỨC LOG_B A Vấn đề được đề cập tới ở đây thực chất chỉ là những bài toán biến đổi giả thiết theo ẩn log_b a và đưa về khảo sát hàm số một biến đơn giản. 5. SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ BẤT ĐẲNG THỨC Đây chính là nội dung chính của chuyên đề mà tác giả Nguyễn Minh Tuấn muốn nhắc tới, một dạng toán lấy ý tưởng từ đề thi THPT Quốc Gia 2018. 6. CÁC BÀI TOÁN CÓ THAM SỐ 7. CÁC BÀI TOÁN VỀ DÃY SỐ

Nguồn: toanmath.com

Đọc Sách

Phương trình nghiệm nguyên liên quan đến mũ - logarit - Trần Trọng Trị
Tài liệu gồm 27 trang được biên soạn bởi tác giả Trần Trọng Trị (giáo viên Toán tiếp sức chinh phục kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020 trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn phương pháp giải bài toán phương trình nghiệm nguyên liên quan đến mũ – logarit, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong đề thi thử THPT Quốc gia môn Toán. 1. Dạng 1: Có đúng một biến nguyên và rút được biến nguyên này theo biến còn lại. Đến đây, ta xét hàm để tìm miền giá trị cho biến nguyên đó. 2. Dạng 2: Khi phương trình rút gọn là phương trình bậc hai theo biến không nguyên. Ta sử dụngđiều kiện có nghiệm của phương trình bậc hai để tìm miền giá trị cho biến nguyên. 3. Dạng 3: Cả hai biến đều nguyên, trong đó có một biến nguyên thuộc tập K cho trước, với K có thể là một khoảng, một đoạn. Khi đó, ta cũng rút biến nguyên thuộc K theo biến còn lại để tìm miền giá trị cho biến đó. [ads] 4. Dạng 4: Cả hai biến đều nguyên, rút được biến này theo biến kia đưa về bài toán tìm điểm nguyên trên các đường cong đơn giản. 5. Dạng 5: Đưa phương trình về tổng các bình phương của hai biến nguyên. 6. Dạng 6: Đưa về phương trình tích của hai biến nguyên. 7. Dạng 7: Sử dụng tính chất chia hết. 8. Dạng 8: Đếm điểm nguyên trong các hình cơ bản.
Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ - logarit - Hoàng Xuân Bính
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên Toán tiếp sức chinh phục kì thi tốt nghiệp THPT năm học 2019 – 2020), hướng dẫn phương pháp giải các bài toán giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN / max – min) của các biểu thức liên quan đến khái niệm hàm số mũ và logarit, đây là dạng toán thường gặp trong các đề thi thử tốt nghiệp THPT môn Toán. Các dạng toán trong tài liệu bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính: + Dạng toán 1 : Đặt ẩn phụ để biến đổi logarit. + Dạng toán 2 : Sử dụng bất đẳng thức cổ điển (Cauchy, Cauchy Schwarz …). + Dạng toán 3 : Cực trị hình học.
Tuyển tập các câu hỏi VD - VDC mũ - logarit hay và khó
Tài liệu gồm 60 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển chọn 600 câu hỏi và bài toán mức độ vận dụng – vận dụng cao chủ đề mũ và logarit từ các đề thi thử tốt nghiệp THPT môn Toán; giúp học sinh ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán, ôn thi học sinh giỏi Toán THPT. Trích dẫn tài liệu tuyển tập các câu hỏi VD – VDC mũ – logarit hay và khó: + Cho hàm số f(x) = (2 + √3)^x − (2 − √3)^x, có tất cả bao nhiêu giá trị nguyên của tham số m ∈ [−2019; 2020] để bất phương trình f(2019^x + 2020x − m) + f(2020^x − 2019x − m) ≤ 0 có nghiệm trên đoạn [0; 2020]. + Cho hàm số f(x) là hàm đa thức hệ số thực, có đồ thị hàm số y = f(x) và y = f'(x) như hình vẽ dưới. Biết rằng phương trình f(x) = me^x có hai nghiệm thực phân biệt thuộc đoạn [0;2] khi và chỉ khi m thuộc nửa khoảng [a;b). Giá trị của biểu thức a + b gần với giá trị nào dưới đây nhất? [ads] + Gọi A, B là các điểm lần lượt thuộc đồ thị các hàm số y = e^x và y = e^−x sao cho tam giác OAB nhận điểm M (1; 1) làm trọng tâm. Khi đó tổng các giá trị của hoành độ và tung độ điểm A gần với giá trị nào sau đây nhất? Xem thêm : Tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật
Tổng ôn tập TN THPT 2020 môn Toán Phương trình - bất phương trình - GTLN - GTNN mũ và logarit
Tài liệu gồm 96 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: phương trình và bất phương trình mũ và logarit, GTLN – GTNN (max – min) mũ và logarit; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình – bất phương trình – GTLN – GTNN mũ và logarit: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT 1. Phương pháp đưa về cùng cơ số. + Phương trình và bất phương trình mũ cơ bản. + Phương trình logarit và bất phương trình logarit cơ bản. 2. Phương pháp đặt ẩn phụ. + Đặt ẩn phụ cho phương trình mũ. + Đặt ẩn phụ cho phương trình logarit. 3. Phương pháp hàm số. + Cơ sở lý thuyết và vận dụng cơ sở lý thuyết để tìm hướng giải. + Một số loại toán cơ bản thường gặp khi sử dụng đơn điệu hàm số. [ads] B. BÀI TOÁN CHỨA THAM SỐ + Dạng 1. Tìm m để f(t;m) = 0 có nghiệm (hoặc có k nghiệm) trên D. + Dạng 2. Tìm m để bất phương trình f(t;m) ≥ 0 hoặc f(t;m) ≤ 0 có nghiệm trên miền D. C. GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT MŨ VÀ LOGARIT