Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

50 dạng toán ôn thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 186 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tuyển tập 50 dạng toán ôn thi tốt nghiệp THPT năm 2022 môn Toán, tương ứng với 50 câu trắc nghiệm trong đề minh họa tốt nghiệp THPT 2022 môn Toán. 1 Số phức 1. A Kiến thức cần nhớ 1. B Bài tập mẫu 1. C Bài tập tương tự và phát triển 2. D Bảng đáp án 4. 2 Các yếu tố cơ bản về mặt cầu 5. A Kiến thức cần nhớ 5. B Bài tập mẫu 5. C Bài tập tương tự và phát triển 6. D Bảng đáp án 7. 3 Tìm điểm thuộc đồ thị, đường thẳng 8. A Kiến thức cần nhớ 8. B Bài tập mẫu 8. C Bài tập tương tự và phát triển 8. D Bảng đáp án 10. 4 Khối nón – trụ – cầu 11. A Kiến thức cần nhớ 11. B Bài tập mẫu 11. C Bài tập tương tự và phát triển 12. D Bảng đáp án 14. 5 Nguyên hàm cơ bản 15. A Kiến thức cần nhớ 15. B Bài tập mẫu 15. C Bài tập tương tự và phát triển 15. D Bảng đáp án 18. 6 Cực trị của hàm số 19. A Kiến thức cần nhớ 19. B Bài tập mẫu 20. C Bài tập tương tự và phát triển 20. D Bảng đáp án 25. 7 Bất phương trình mũ và bất phương trình lôgarit 26. A Tóm tắt lý thuyết 26. B Bài tập mẫu 26. C Bài tập tương tự và phát triển 26. D Bảng đáp án 30. 8 Thể tích của khối chóp cơ bản 31. A Kiến thức cần nhớ 31. B Bài tập mẫu 31. C Bài tập tương tự và phát triển 31. D Bảng đáp án 34. 9 Tập xác định hàm số lũy thừa, hàm số lôgarit 35. A Kiến thức cần nhớ 35. B Bài tập mẫu 35. C Bài tập tương tự và phát triển 35. D Bảng đáp án 36. 10 Phương trình lôgarit 37. A Kiến thức cần nhớ 37. B Bài tập mẫu 37. C Bài tập tương tự và phát triển 37. D Bảng đáp án 38. 11 Tích Phân sử dụng tính chất cơ bản 39. A Kiến thức cần nhớ 39. B Bài tập mẫu 39. C Bài tập tương tự và phát triển 39. D Bảng đáp án 43. 12 Phép toán trên số phức 44. A Kiến thức cần nhớ 44. B Bài tập mẫu 44. C Bài tập tương tự và phát triển 44. D Bảng đáp án 46. 13 Xác định các yếu tố cơ bản của mặt phẳng 47. A Kiến thức cần nhớ 47. B Bài tập mẫu 47. C Bài tập tương tự và phát triển 47. D Bảng đáp án 49. 14 Véc-tơ trong không gian 50. A Kiến thức cần nhớ 50. B Bài tập mẫu 51. C Bài tập tương tự và phát triển 51. D Bảng đáp án 53. 15 Điểm biểu diễn số phức 54. A Kiến thức cần nhớ 54. B Bài tập mẫu 54. C Bài tập tương tự và phát triển 55. D Bảng đáp án 57. 16 Tiệm cận 58. A Kiến thức cần nhớ 58. B Bài tập mẫu 58. C Bài tập tương tự và phát triển 58. D Bảng đáp án 62. 17 Tính giá trị lôgarit 63. A Kiến thức cần nhớ 63. B Bài tập mẫu 63. C Bài tập tương tự và phát triển 63. D Bảng đáp án 67. 18 Nhận dạng đồ thị 68. A Kiến thức cần nhớ 68. B Bài tập mẫu 70. C Bài tập tương tự và phát triển 70. D Bảng đáp án 79. 19 Phương trình đường thẳng 80. A Kiến thức cần nhớ 80. B Bài tập mẫu 82. C Bài tập tương tự và phát triển 82. 20 Hóa vị – chỉnh hợp – tổ hợp 85. A Kiến thức cần nhớ 85. B Bài tập mẫu 85. C Bài tập tương tự và phát triển 85. D Bảng đáp án 86. 21 Thể tích 87. A Kiến thức cần nhớ 87. B Bài tập mẫu 88. C Bài tập tương tự và mở rộng 88. D Bảng đáp án 89. 22 Đạo hàm của hàm số mũ, logarit 90. A Kiến thức cần nhớ 90. B Bài tập mẫu 90. C Bài tập tương tự và phát triển 90. D Bảng đáp án 91. 23 Xét tính đơn điệu của hàm số 92. A Kiến thức cần nhớ 92. B Bài tập mẫu 92. C Bài tập tương tự và phát triển 92. D Bảng đáp án 96. 24 Các yếu tố cơ bản mặt tròn xoay 97. A Kiến thức cần nhớ 97. B Bài tập mẫu 97. C Bài tập tương tự và phát triển 98. D Bảng đáp án 99. 25 Tích Phân sử dụng tính chất cơ bản 100. A Kiến thức cần nhớ 100. B Bài tập mẫu 100. C Bài tập tương tự và phát triển 100. D Bảng đáp án 101. 26 Cấp số cộng, cấp số nhân 102. A Kiến thức cần nhớ 102. B Bài tập mẫu 102. C Bài tập tương tự và phát triển 102. D Bảng đáp án 105. 27 Nguyên hàm 106. A Kiến thức cần nhớ 106. B Bài tập mẫu 106. C Bài tập tương tự và phát triển 106. D Bảng đáp án 107. 28 Cực trị của hàm số dựa vào BBT, Đồ thị 108. A Kiến thức cần nhớ 108. B Bài tập mẫu 108. C Bài tập tương tự và phát triển 109. D Bảng đáp án 110. 29 Tìm GTLN & GTNN của hàm số 111. A Kiến thức cần nhớ 111. B Bài tập tương tự và phát triển 112. C Bảng đáp án 117. 30 Xét tính đơn điệu của hàm số 118. A Kiến thức cần nhớ 118. B Bài tập mẫu 118. C Bài tập tương tự và phát triển 118. D Bảng đáp án 120. 31 Tính giá trị lôgarit 121. A Kiến thức cần nhớ 121. B Bài tập mẫu 121. C Bài tập tương tự và phát triển 121. D Bảng đáp án 124. 32 Tích phân hàm ẩn 125. A Tóm tắt lý thuyết 125. B Kiến thức cần nhớ 125. C Bài tập mẫu 125. D Bài tập tương tự và phát triển 125. E Bảng đáp án 128. 34 Viết phương trình mặt phẳng liên quan đến đường thẳng 129. A Kiến thức cần nhớ 129. B Bài tập mẫu 129. C Bài tập tương tự và phát triển 130. D Bảng đáp án 134. 35 Số phức 135. A Kiến thức cần nhớ 135. B Bài tập mẫu 135. C Bài tập tương tự và phát triển 136. D Bảng đáp án 138. 36 Khoảng cách từ điểm đến mặt phẳng 139. A Kiến thức cần nhớ 139. B Bài tập mẫu 139. C Bài tập tương tự và phát triển 140. D Bảng đáp án 144. 37 Xác suất 145. A Kiến thức cần nhớ 145. B Bài tập mẫu 146. C Bài tập tương tự và phát triển 147. D Bảng đáp án 148. 38 Phương trình đường thẳng 149. A Kiến thức cần nhớ 149. B Bài tập mẫu 151. C Bài tập tương tự và phát triển 151. 39 Bất phương trình mũ và bất phương trình lôgarit 156. A Tóm tắt lý thuyết 156. B Bài tập mẫu 156. C Bài tập tương tự và phát triển 157. D Bảng đáp án 160. 40 Tính đơn điệu của hàm số liên kết 161. A Kiến thức cần nhớ 161. B Bài tập mẫu 163. C Bài tập tương tự và phát triển 163. D Bảng đáp án 174. 41 Cực trị số phức 175. A Kiến thức cần nhớ 175. B Bài tập mẫu 176. C Bài tập tương tự và phát triển 177. D Bảng đáp án 180.

Nguồn: toanmath.com

Đọc Sách

Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2
Nội dung Phát triển bài toán vận dụng cao đề minh họa THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Phát triển bài toán vận dụng cao THPT 2020 môn Toán lần 2 Để giúp học sinh chuẩn bị cho kỳ thi tốt nghiệp THPT năm 2020 môn Toán, thầy giáo Lê Văn Đoàn đã biên soạn một tài liệu hướng dẫn giải và phát triển các bài toán vận dụng cao (VDC) trong đề minh họa. Tài liệu này bao gồm 51 trang, tập trung vào việc giải và phát triển các bài toán từ câu 46 đến câu 50. Cụ thể, tài liệu bao gồm các dạng toán như: Câu 46: Tìm số nghiệm của phương trình liên quan đến sinx khi có bảng biến thiên Biện luận nghiệm dựa vào bảng biến thiên hoặc đồ thị hàm f(x) Bài toán kết hợp giữa hàm số và tích phân Bài toán chứa tham số m trong bài toán chứa hàm cụ thể Câu 47: Tìm GTLN – GTNN của biểu thức hai ẩn phụ thuộc vào mũ – logarit Bài toán dồn biến, rồi sử dụng bất đẳng thức Cauchy hoặc khảo sát hàm một biến Sử dụng f(u) = f(v) hoặc f(u) > f(v) hoặc f(u) < f(v) khi hai gặp hai hàm khác loại Câu 48: Tìm GTLN – GTNN của hàm phụ thuộc tham số trên đoạn Bài toán chứa tham số trong hàm cụ thể Bài toán max – min khi đề cho đồ thị hoặc bảng biến thiên Giá trị lớn nhất và nhỏ nhất của hàm trị tuyệt đối Câu 49: Thể tích khối đa diện cắt ra từ một khối khác Câu 50: Tìm số ẩn hoặc mối liên hệ giữa các ẩn trong phương trình logarit chứa hai ẩn Đây là những dạng toán phức tạp và đòi hỏi một sự am hiểu sâu sắc về lý thuyết và kỹ năng giải toán của học sinh. Hy vọng tài liệu này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới.
Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2
Nội dung Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Bản PDF - Nội dung bài viết Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 Tài liệu Phát triển đề minh họa tốt nghiệp THPT 2020 môn Toán lần 2 được biên soạn bởi thầy giáo Ths. Nguyễn Chín Em và bao gồm 213 trang. Đây là tài liệu được sưu tầm kỹ lưỡng với mục đích hỗ trợ học sinh ôn tập và tự kiểm tra kiến thức trước kỳ thi quan trọng. Tài liệu này cung cấp 50 dạng toán khác nhau, từ những dạng toán cơ bản đến phức tạp, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách linh hoạt. Mỗi câu hỏi và bài toán trong đề thi đều được kèm theo nhiều câu hỏi và bài toán tương tự, đồng thời có đáp án và lời giải chi tiết giúp học sinh tự kiểm tra và tự mình sửa sai. Các dạng toán trong tài liệu được chia thành nhiều cấp độ, từ lớp 1 đến lớp 50, bao gồm cả các dạng toán về hoán vị, chỉnh hợp, tổ hợp, phương trình mũ, logarit, hàm số mũ, nguyên hàm, tích phân, thể tích khối đa diện, số phức, hệ Oxyz, hàm số, và nhiều dạng toán khác. Điều này giúp học sinh tiếp cận một cách toàn diện các kiến thức cần thiết cho kỳ thi tốt nghiệp THPT. Qua tài liệu này, học sinh không chỉ được cung cấp nguồn tư liệu ôn tập mà còn được rèn luyện kỹ năng giải toán, tư duy logic và khả năng tự giác trong việc học tập. Đồng thời, tài liệu cũng giúp học sinh nâng cao kiến thức và tự tin hơn khi bước vào kỳ thi quan trọng của mình.
Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Nội dung Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Bản PDF - Nội dung bài viết Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Trong bối cảnh học sinh trở lại trường sau thời gian dài nghỉ học vì dịch bệnh, đặc biệt là học sinh khối 12 đang chuẩn bị cho kỳ thi THPT Quốc gia, tập thể quý thầy cô nhóm Geogebra - Nguyễn Chín Em đã sáng tạo và phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020. Bộ tài liệu gồm 218 trang, chứa một loạt câu hỏi và bài tập được xây dựng dựa trên cấu trúc logic, giúp học sinh hiểu rõ, áp dụng kiến thức vào thực tế một cách hiệu quả.
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.